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Abstract
The following paper describes a new approach for the automatic segmentation and tissue classification of ana-
tomical objects such as brain tumors from magnetic resonance imaging (MRI) data sets using artificial neural
networks. These segmentations serve as an input for 3D–reconstruction algorithms. Since MR images require a
careful interpretation of the underlying physics and parameters, we first give the reader a tutorial style introduc-
tion to the physical basics of MR technology. Secondly, we describe our approach that is based on a two–pass
method including non–supervised cluster analysis, dimensionality reduction and visualization of the texture fea-
tures by means of nonlinear topographic mappings. An additional classification of the MR data set can be ob-
tained using a post–processing technique to approximate the Bayes decision boundaries. Interactions between
the user and the network allow an optimization of the results. For fast 3D–reconstructions, we use a modified
marching cubes algorithm but our scheme can easily serve as a preprocessor for any kind of volume renderer.

The applications we present in our paper aim at the automatic extraction and fast reconstruction of brain tumors
for surgery and therapy planning. We use the neural networks on pathological data sets and show how the method
generalizes to physically comparable data sets.

Keywords: Artificial Neural Networks, Cluster Analysis, Texture Analysis, Magnetic Resonance  Imaging, Sub-
space Mapping, Visualization of Multidimensional Feature Spaces, Tissue Classification, 3D–Reconstruction,
Marching Cubes, Brain Tumors

1. Introduction
Volumetric rendering has become increasingly important during the last few years, in particular in the field of
medical imaging. Advanced volume renderers, as in [10],[13]or [17] have been developed as well as 3D surface
reconstruction methods like marching cubes[16] or Delaunay triangulation. However there is still one presump-
tion for all these methods. In order to provide reliable and high–quality images both 3D–reconstruction algo-
rithms and volume renderers require a robust pre–segmentation of the initial 3D data sets to be analyzed. Most
methods presented to date, are either based on a linear separation of the grey values[19] or the voxels to be ren-
dered are treated interactively[10].

For a robust segmentation however there are two ways to pre–segment the data material. The first possibility
arises when dealing with magnetic resonance imaging, where a multiparameter image can be generated and then
be clustered and segmented pixelbased with standard statistical methods as [2],[4] or with Fuzzy approaches as
in [8]. In practice however, multiparameter scans are too expensive and too stressful for the patients. Thus, the
most promising way to extract features from grey level images are texture analysis techniques describing the local
pattern to be discriminated in a texture feature space. In addition to classical methods stemming from image pro-
cessing[5] adaptive non–linear paradigms, like artificial neural networks[14] have proved to be a promising alter-
native for many applications. After extracting features from the data, the problem of clustering and classification
can be treated with methods of statistical data analysis. The objective of clustering is to find an optimal representa-
tion of the data distribution by means of a discrete and limited set of mean vectors or centroids, whereas classifica-
tion aims at defining minimum error decision boundaries using a statistically representative set of training vec-



tors. There are numerous mathematical methods to solve this problem from C–means clustering to maximum
likelihood estimation. But most computationally inexpensive methods assume too many restrictions on the un-
derlying statistical distribution of the data. For this reason, the advantages of neural network feature extraction,
clustering and classification have been discovered during the last few years [21].

The following paper describes a discrimination method for magnetic resonance data based on topological map-
pings of Kohonen[11],[12]. Based on application studies as in [6] and [7] these paradigms have been adapted and
extended by the authors. It will be shown that the network performs both feature extraction, clustering and classi-
fication in a unique approach. Moreover, because of the topological organization of network’s neurons it also per-
forms a nonlinear subspace mapping from the high dimensional texture feature space into the RGB color space
and corresponding colors refer to similarities of local texture features in the image. With this capability, the net-
work also provides a visualization method for high dimensional feature spaces and results in an interesting alter-
native to standard methods, as [1] or [24].

The organization of our paper is as follows: First, for reasons of understanding the underlying physical meaning
of MR–images, we give a tutorial–style brief introduction to the principles of magnetic resonance imaging. Then
we describe the topology and the training rules of the neural network which we adapted for our purposes and ex-
plain the visualization technique we developed. In particular when approaching the Bayes decision boundaries
with the network, the user is able to interact with the neurons of the network and to modify class assignments.
For a fast 3D surface reconstruction we use a modified marching cubes technique. The application of our method
on the extraction, classification and 3D–reconstruction of brain tumors shows its capabilities and illustrates the
visualization technique.

2. Physical Foundations of MR–Imaging

2.1. General Remarks
Magnetic resonance imaging is one of the most effective methods so far developed to give an in vivo insight into
the human body. Providing 3D volume data sets, MR images have often been used to illustrate the capabilities
of rendering and reconstruction techniques. However, in contrast to standard Computer x–ray tomography, where
the data set always presents the density of the analyzed volume, MR images are much more complex in the under-
lying understanding of quantum mechanics. Moreover, the interpretation of MR images strongly depend on the
parameter sequences used for the recording process. In order to develop a reliable automatic method for data anal-
ysis, it is of crucial importance that the physics of the MR method are understood. The following section will
briefly introduce the basic physics using a simplified mechanical model and explain the meaning of the three main
parameters that can be measured, namely the longitudinal relaxation time T1, the transversal relaxation time T2
and the proton’s density. A good introduction to MR–imaging can be found in [15] or  [20].

2.2. Magnetic Resonance and the Lamor Equation
Magnetic resonance is a phenomenon that was discovered in the 40ies. The phenomenon is based on the interac-
tion of atomic nuclei, located in a constant magnetic field,with an electromagnetic high frequency (HF) field.
From the point of view of classical physics this interaction can be explained as a precession of the nuclei’s spin
with an isotope dependent frequency, called Lamor frequency. The precession itself is stimulated by means of
the HF field. This is illustrated in figure 1.

Any atomic nucleus that consists of an odd number of protons and neutrons is characterized by an angular momen-
tum or spin. From the point of view of classical physics the spin gives rise to a circular current due to the positive
charge of the nucleus, and thus to a magnetic momentum. In this way, the nucleus can be interpreted as a tiny
magnet. If we expose it to an external magnetic field the direction of the spin will change according to the external
force (see figure 1a). During that relaxation process of the nucleus, the spin will describe a precession movement
for a short time with a characteristic frequency, the so–called Lamor frequency !" According to eq. 1 the Lamor
frequency depends  on the strength B0 of the external field and on a constant #.

! ! " " B0 ( 1 )



Figure 1. Simplified model for magnetic resonance of a nucleus stimulated by an external HF–field
a)spin oriented in a constant magnetic field B0
b)precession of the spin stimulated by a transient HF–impulse
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After being oriented towards the direction of this external field, the nucleus’ relaxation can be stimulated again
by additional transient HF impulses. In order to achieve resonance and in–phase precession, the frequency of the
transient field has to correspond to the Lamor frequency of the nucleus.

In most practical applications H+ nuclei are measured because of their sensitivity and their density in organic mat-
ter. The temporal behavior of the relaxation however strongly depends on how the nucleus is held together chemi-
cally.

2.3. Relaxation Times
The magnetic momentum M will result from a superposition of the momentum of all nuclei of the corresponding
volume. During relaxation the vector M of the magnetic momentum can be decomposed into components in the
direction of the external constant field (z) and in those perpendicular (x,y). This is illustrated in figure 2a, which
shows the vectorial components of M. After relaxation into the equilibrium, the Mxy components of M will be
decreased to zero and M will be equal to Mz again. The temporal behavior of Mz and of Mxy components are
described by two time constants T1 and T2, that are also shown in figure 2.

T1 describes the relaxation process in z direction (longitudinal relaxation) and the growth of the Mz component
by exchange of energy with the environment, whereas T2 stands for the decrease of the Mxy component (transver-
sal relaxation). Both constants are only weakly correlated, since statistical phase shifting of single spins accelerate
the reduction of the sum Mxy.

Figure 2. a) Magnetic Momentum M and it’s components
b) Temporal relaxation behavior of the components of M
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Finally, it can be stated, that the echo measured depends on numerous parameters, as:
– spin density
– relaxation T1
– relaxation T2
– chemical shifts
– flux (blood)

The following paragraph briefly describes one of the pulse sequences of the stimulating HF–field to measure T1
and to generate T1 weighted images.

2.4. Measuring T1–Relaxation with Spin–Echo Sequences
In addition to saturation recovery and inversion recovery, the spin–echo sequence (see figure 3) is one of the three
most important impulse sequences used for measuring the parameters stated above. In order to measure a signal
which depends mainly on T1 the Mz component has to be tipped into the xy–plane, where the signal can be de-
tected. This is performed by a first 90o pulse. The coherence of the single spins however will rapidly get lost and
the resulting response will decrease with time. This is shown in figure 4. In order to create an echo a second  180o

impulse will invert the phase drifts and will generate coherence again for a short time interval. The maximum
response resulting from this can be measured at the echo–time Te.

After this second 180o pulse the relaxation process will turn the magnetic momentum again into its equilibrium.
If we repeat the pulse sequence described above with a time rate TR that is much shorter than T1 the actual strength
of the measured response will strongly depend on the T1 of the respective nucleus. If, however, TR is longer than
T1 the resulting echo will mainly depend on T2 and on the density of the spins.

Choosing respectively short  repetition times, a value that represents the T1 and characterizes the nucleus will
be received for each volume element .

Figure 3. Spin–Echo sequences characterized by echo time Te and pulse repetition time TR
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Figure 4. Temporal lost of phase coherence in the Mxy component of the Momentum
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Finally, the question arises how to code the spatial position of the volume elements in 3D and how to look inside
the volume. If we look back to the Lamor equation (eq. 1) we remember that the resonance frequency depends
on the strength of the magnetic field. Using this relationship additional gradient magnetic fields in x, y and z direc-
tion can be superimposed to code the spatial position in terms of different Lamor frequencies for one type of



nucleus. The 3D volumetric image itself can then be obtained by methods such as an inverse 3D Fourier transform
of the data set measured. This will not be described here in detail but can be found in [15] or [20].

3. Clustering and Classification with Topological Mapping Networks of Kohonen
3.1. General Remarks
After being introduced to the physics of MR–images the question arises how to set up a method for the automatic
recognition, classification and visualization of the data. In statistical data analysis we may find numerous meth-
ods to perform these tasks[4].
In general, a robust classification pipeline can be defined as follows:
It consists of three different tasks to be solved separately
I) feature extraction
II) cluster analysis
III) supervised classification based on interactive selection of training patterns
The goal of a feature extractor is to find a limited set of invariant descriptors that characterizes the data in a proper
way. In this case the standard methods of texture analysis could be used as in [9]. A further way to extend the
features taken from texture analysis is to inject a contrast medium and to record a second scene. Cluster analysis
should give an indication about the statistical distribution of the feature vectors. Since it will be generally multidi-
mensional, we will face the problem of visualizing its topological structure which is of importance for the selec-
tion of training areas for a supervised classification method.
Artificial neural networks have proved to be an interesting alternative to standard methods and several application
studies have shown their advantages [23].
In the following section we propose a neural network which is capable of solving these tasks in a unique paradigm
and allows subspace mapping and visualization of the multidimensional texture feature space for the interactive
selection of training patterns.

3.2. Topology and Training Rules of Kohonen Mapping
The Kohonen Map, introduced in [11] or [12], is a self–organizing network which is basically trained without
supervision. Its objective is the organization of the input patterns to a topological structure represented by its neu-
rons, where the relations between different patterns are preserved.
The Kohonen map is a two–layered network. The first layer of neurons can be considered as a group of sensors
picking up the data. It is entirely connected to a second, two–dimensional layer: the competitive layer. Figure 5
shows the topology of the network. The weights associated with the connections are adjusted during training and
only one single neuron in the competitive layer can be active at a time. This neuron represents the cluster which
the data set belongs to. Due to the training rules explained below, the spatial distance of two neurons reacting on
different input patterns is a measure for the similarity of the two patterns.
The training of the network is carried out by presenting data vectors x to the input layer of the network whose
connection weight vectors mi of all competitive neurons i are chosen by random values. If N is the dimension
of the data, we chose N input neurons and define an Euclidean distance di between x and mi with

di !# x$mi #! %

N

j!1

(xj $ mij)2
& ( 2 )

The neuron c with the minimum distance is then activated, where

dc ! min
i

(di) ( 3 )
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Figure 5. Topology of the Kohonen map and the time dependent neighborhood Nc(t) of a neuron c

The updating of the weights mij associated to the neurons is only performed within a proximity ( i  Nc(t)) of c.
This proximity Nc(t) is reduced with training time t. The updating follows equation 4, where a (t) represents a
time–dependent learning rate:

m(t'1)
ij ! m(t)

ij ' #m(t)
ij

$(t) ! $0(1 $

t
T),     t ( [0,...,T]

( 4 )

( 5 )

( 6 )

#m(t)
ij ! )

$(t)(xj $ m(t)
ij ),

0,   
if neuron i ( Nc(t)
otherwise

The time–dependent neighborhood, which is also illustrated in figure 5, is updated according to:

d(t) ! d0(1 $

t
T) ,      t ( [0,...,T] ( 7 )

Thus, the network performs two features during the training that are strongly related to our problem:
I. A separation, i.e. cluster analysis of the presented data by mean vectors mi that are associated as weights

to the neurons.

II. A topological ordering of the competitive neurons in such a way that neighboring neurons in the layer
represent similar clusters in multidimensional space and thus a dimensionality reduction.

This can also be interpreted as a nonlinear, topology preserving, associative mapping process.

Generally, the Kohonen Map refers to the classical iterative optimization techniques, well–known from C–means
clustering [2].

3.3. Visualizing Neighbored Clusters in a High Dimensional Texture Space
The previous section we have shown that the standard Kohonen Map can be used to reduce the dimensionality
of data sets used for training. To do so, the number of input neurons has to be equal to the dimension of the input
data, where each data vector is presented simultaneously to the net. For the neurons in the competitive layer are
ordered topologically, i.e. neighboring neurons react to data vectors similar in the input space, the mapping can
be interpreted as a reduction of any N–dimensional space into 2 dimensions preserving the topology of the data



as much as possible. The resolution of this discrete 2D space is given by the number of competitive neurons, i.e.
clusters.

The visualization of cluster connectivity in high–dimensional spaces is, however, very important for the interac-
tive process of selecting  training areas for a supervised classification step. In order to map this onto color attrib-
utes, an easy–to–use and efficient scheme had been developed by Gross and Seibert (see [6] and [7]). We have
extended this method by introducing a texture–based topology with a 3D competitive layer.

G=y

R=xB=z
3D output layer
(i.e. 6x6x6 neurons)

interconnection

feature vector
input neu-
rons

MR image

coordinate system of
the competitive layer

RGB color space

neuron

Figure 6. 3D Extension of the Kohonen – map with a 2D–3x3 input layer

Referencing the axes of the cube with the primaries R, G and B each neuron of the competitive layer represents
a discrete entity in RGB space, i.e. it corresponds to a color triplet. The time–dependent neighborhood can easily
be extended to 3D.

Since the network now arranges the neurons topologically during random training on the image, neighboring neu-
rons with similar colors react to texture features neighbored in multidimensional space. Thus, the similarity of
the color provided by the reacting neuron refers to a neighborhood in N–dimensional space.

Since visual data analysis is a perceptual task of human vision [7] and the RGB presentation is not a perceptual
color space, post processing transformations can improve the result, for instance by referencing in CIE–Lab or
CIE–Luv or others.

3.4. Supervised Classification with Learning Vector Quantization
So far, the Kohonen map has only been used for clustering, topological organization and for subspace mapping.
For supervised classification however, each neuron – and also each cluster centroid –  has to be assigned to a cer-
tain class depending on the definition of the user. This can be done by interactive selection of training areas and
by a majority voting of each neuron stimulated by the training set. After this, each neuron has an associated class
and the network is able to classify. However during the organization process the goal was to find a limited set
of centroids representing the data in a C–means sense. As a result the centroids represent the variety of feature
vectors in an optimal way leading to a minimum of the error function, which can be easily calculated by the Eukil-
dean distance between all feature vectors and their nearest codebook vector. The self–organization does not yield
to optimal decision boundaries, since class assigments were not taken into account. For this reason, the network
can be trained again in order to move corresponding centroids towards the Bayes decision boundary and to im-
prove the classification result.



This postprocessing is known as learning vector quantization (LVQ) [11] and can be described as follows:

For a given input pattern x let mi and mj be the closest centroids to x. We modify these mean vectors according
to
mi(t ' 1) ! mi(t) $ $ " [x(t) $mi(t)]

mj(t ' 1) ! mj(t) ' $ " [x(t) $mj(t)]

if mi and mj are the two closest weight vectors
to the input vector x,

x and mj belong to the same class,
x and mi belong to different classes and
x is falling into the window

mk(t ' 1) ! mk(t) ' % " $ " [x(t) $mk(t)] if x, mi and mj belong to the same class
(k ( {i,j})
where $ is a small constant

This window is defined as a symmetric area around the midplane of mi and mj. Then x falls into the window if

min(di

dj
,
dj

di
) * s

s ! 1 $ w
1 ' w

( 8 )

( 9 )

Where di and dj are the two distances of  x to mi and mj. The threshold s is calculated according to eq. 9 and the
relative window size w is chosen to app. 20%.

4. Application
4.1. General Remarks
In medical treatment of cancer patients magnetic resonance imaging systems are of increasing importance in
diagnosis, therapy planning and supervision. In particular when facing brain tumors exact knowledge about the
localization and extension of the tumor in the skull is essential for surgical procedures as well as for radiotherapy.
In surgery, on the one hand, the tumor has to be removed entirely without damaging other important parts of the
brain, nerves or veins. Radiotherapy, on the other hand, which focuses high energy radiation into the center of
the tumor has to be parametrized in a way that the damage of the surrounding tissue is minimized. Finally, a long
term supervision of the tumor’s development has to follow for the patient’s safety.

The standard process of human interpretation and diagnosis of these images is based on the expert knowledge
of the physician and on the significant differences of tissue textures in the images. Usually, affected areas are indi-
cated by interactive editing of the image. For these reasons, an automatic procedure as a support for the interpreta-
tion, classification and fast 3D–reconstruction of the initial images would be very helpful to the physician.

The  following section describes an application of the methods introduced for the recognition and interpretation
of brain tumors from MR images. We illustrate how the clustering and visualization algorithm works and show
that LVQ training can successfully separate tissue types. Finally, a generalization to unknown images is provided.
For reasons of performance in clinical procedures, we use a modified marching cubes algorithm for fast 3D–re-
construction.

4.2. Raw Image Data Used
The images shown in figure 7 present a typical set of T1–weighted MR image slices of a brain cancer patient af-
fected by two meningioma. They were recorded with a spin–echo sequence of TR = 600 ms and Te = 15 ms. The
spatial resolution is approx. 1 mm in the image plane and the signal is coded with 12 bits. Figure 8 shows the same
image after applying a contrast medium (Gadolinium) to the patient, where the echo of the tumor appears much
brighter. This image set illustrates that a standard linear separation of the grey values as proposed in [19] will
never lead to reliable segmentation since the fat tissue surrounding the skull renders the same grey value. Bones
cannot be seen in the images because of their low resonance signal. 



Figure 7. T1–weighted MR image slices (precontrasted)

Figure 8. T1–weighted MR image slices (postcontrasted)

4.3. Clustering and Visualizing the Texture Features
As introduced in chapter 3, we applied our artificial neural network of size 6x6x6 neurons on the two image data
sets (figures 7 and 8) and trained it on one slice by selecting randomly center pixels and a 3x3 environment in
the pre– and postcontrasted images. Thus, we defined a raw texture description for further analysis, using 18 grey-
values, since we accumulate for one pixel position greyvalues of both images in one feature vector. Figure 11
shows the result of the cluster analysis and dimensionality reduction from 18 to 3, namely RGB. The similarity
of the colors stands for neighbored neurons responding to a similarity of the local texture elements. We see that



the larger tumor appears yellow and can be separated from the smaller one (blue) and from other tissue types in
all slices of the data set. The network was trained for 20000 cycles.

4.4. Supervised Classification
Using the clustering results as a base, it is possible to define and evaluate polygonal training areas for a supervised
method, as shown in figure 10. For each of the 7 anatomical classes defined, pixels within the polygons represent-
ing that class were used to train the network with LVQ postprocessing in 50000 cycles. The result of the super-
vised method for one selected slice is shown in Figure 12.

Although the clustering results indicated  the possibility of separating the tumors from other tissue types, some
errors still remain stemming either from inadequate training areas or from local minima. This result can be im-
proved by interactive masking of the neurons in the Kohonen cube, as shown in figure 13 (upper left). Interactive
masking optimizes the class assignments of selected neurons, which leads to an optimizing shift of the decision
boundaries. The improved result in figure 13 (upper right) is based on this additional information, that was not
included in the training areas.

The optimized classifier was applied on the entire image data set (see figure 13 lower) and serves as an input for
3D–reconstruction techniques.

4.5. Generalization
The reliability of a classifier is always evaluated by the capability to generalize the classification to data sets it
was not trained on. With the requirement of similar parameters used for image scanning, physically correspond-
ing images can be generated as in figure 9. 

Figure 9. Raw images for testing the generalization capability (T1–weighted image)
a)precontrasted image
b)postcontrasted image

a) b)

In this case the interpretation is much more difficult for the physician. The contrast medium increases the signal
behind the left eye of the patient as well as in the rear right part of the cortex. A determination of the tumor bound-
aries is very difficult due to the fact that the edge between the healthy tissue and the pathological tissue is not well
defined. Applying the Kohonen map (trained on image data shown in figure 7) for clustering we achieve a result
as in figure 14 (left), that reveals the characteristics of the pathological tissue. As the image contains the same



tumor type (meningioma) the network indicates these regions with yellow colors. Furthermore, the classified
image is shown in figure 14 (right).
The results of this section are very promising, because the network trained on only one pathological data set is
able to generalize the clustering and classification results to other comparable data sets. Using a statistically repre-
sentative data base of brain cancer victims, we could optimize one large scale network and apply it to further new
data stemming from everyday clinical requests for diagnosis.

4.6. Surface Reconstruction
The classified image slices from figure 13 can serve as an input for any kind of surface reconstruction or volume
rendering method. For surgery and radiotherapy we need a fast and reliable method to achieve a 3D shape from
our sparse data slices more than photorealistic ray traced images from slices of extreme density.
One problem arises when applying algorithms like a ”marching cubes” on a classified data set with a low number
of slices: We have to solve the task of interpolating ”in–betweens” i.e. classified image slices instead of simple
grey value slices.
To solve this problem, we use a modified weighted interpolation scheme, which is based on a distance weighted
maximum decision for the class assignment of the respective voxel to be interpolated. The interpolation takes into
account both the distances and the frequency of the labels on the vertices for the derivation of the label of any
interpolated voxel coordinate.
The generation of surface polygons can be performed by a marching cubes algorithm [16] acting on the classified
and interpolated image slices. With a simple modification, the two possible states of a vertex, namely ”inside”
or ”outside” of the surface can be obtained considering the actual classes to be reconstructed, as for instance ”tu-
mor”. According to the combination of ”inside” and ”outside” states in one cube consisting of 8 vertices, we built
up a look–up table of precalculated triangles.
To provide the surface normal for the shading, we calculated standard surface normals out of the triangle geome-
try and stored them into the look–up table. This accelerates the rendering process. However we will only get a
limited set of different triangles and normals which leads to a more ”boxlike” appearance of the image. Another
way would be to calculate the normals out of the grey level gradients from the raw image. But this gives rise to
artefacts stemming from the difference between the density or response of a voxel and its class assignment  that
only corresponds, if linear separation methods are applied.
With the method explained above images can be achieved, giving a detailed impression of the tumor’s volume.
For therapy planning it is necessary to compute the volume coordinates of the affected regions. Visual information
of the localization of the tumor is given in figure 15 showing the tumor in a transparent skull from a top view.

5. Conclusion
The method introduced in this paper has shown how to successfully apply artificial neural networks for the clus-
tering, visualization and classification of magnetic resonance image data sets in order to support physicians in
diagnosis and therapy planning. The advantages of this method are the easy–to–use scheme in a unique mathe-
matical model on the one hand and its flexibility and generalization capability on the other hand. Using the sub-
space mapping of the network we can easily establish a visualization technique for high dimensional texture fea-
tures.  In particular the interaction between a supervisor and the network during the training phase allows an
optimization of the classification performance. This method can serve as a high quality and efficient preprocessor
for any kind of volumetric renderer in computer graphics.
Future research should be directed towards training the network with statistically representative brain cancer data
bases and to apply it in clinical case studies.
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COLOR PICTURE SECTION

Figure 10. Polygonal training areas for supervised classification

Figure 11. Cluster analysis, dimensionality reduction and visualization of local texture properties



Figure 12. Supervised classification of a selected slice

Figure 13. Upper left: Masked Kohonen cube
 Upper right: Optimized result 
 Lower: Classification of the data set



Figure 14. Generalization with the Kohonen feature map
 left: Clustering result
 right: Classification result

Figure 15. Top view on reconstructed tumor and and on the skull


