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Abstract

We present an automatic face recognition approach, which relies on the analysis of the three-dimensional facial

surface. The proposed approach consists of two basic steps, namely a precise fully automatic normalization stage

followed by a histogram-based feature extraction algorithm. During normalization the tip and the root of the nose

are detected and the symmetry axis of the face is determined using a PCA analysis and curvature calculations.

Subsequently, the face is realigned in a coordinate system derived from the nose tip and the symmetry axis, result-

ing in a normalized 3D model. The actual region of the face to be analyzed is determined using a simple statistical

method. This area is split into disjoint horizontal subareas and the distribution of depth values in each subarea is

exploited to characterize the face surface of an individual. Our analysis of the depth value distribution is based

on a straightforward histogram analysis of each subarea. When comparing the feature vectors resulting from the

histogram analysis we apply three different similarity metrics. The proposed algorithm has been tested with the

FRGC v2 database, which consists of 4950 range images. Our results indicate that the city block metric provides

the best classification results with our feature vectors. The recognition system achieved an equal error rate of

5.89% with correctly normalized face models.

1. INTRODUCTION

Besides fingerprints and iris, faces are currently the most im-
portant and most popular biometric characteristics observed
to recognize individuals in a broad range of applications
such as border control, access control and surveillance sce-
narios. Two dimensional face recognition systems rely on the
intensity values of images to extract significant features from
the face and have been an active research area for more than
three decades. One of the most influential 2D face recog-
nition algorithms is the Eigenface approach by Turk and
Pentland [TP91], which relies on the principal component
analysis (PCA) [MP01]. Von der Malsburg et al. introduced
the Gabor Wavelets [LVB∗93]. Lu et al. [LPV03] propose
fisher faces based on the linear discriminate analysis (LDA),
and the independent component analysis (IDA) is used by
Liu et al. [LWC99]. Today, mature 2D recognition systems
are available that achieve low error rates in controlled envi-
ronments [PSO∗07]. However, face recognition based on 2D
images is still quite sensitive to illumination, pose variation,
make-up and facial expressions. Moreover, a facial photo is

easy to acquire even without consent of an individual and
may be used to spoof a 2D face recognition system.

In contrast to 2D face recognition, 3D face recognition re-
lies on the geometry of the face, not only on texture informa-
tion. Due to this fundamentally different approach, it has the
potential to overcome the shortcomings of 2D approaches.
The 3D geometry of the face is inherently robust to varying
lighting conditions (Nevertheless, the 3D acquisition system
itself can be sensitive to varying lighting conditions, espe-
cially to strong ambiance light.). A combined 2D-3D face
recognition system may use the spatial information to com-
pensate for pose changes to make 2D recognition more re-
liable. Modeling and faking the geometry of a face is much
more expensive than the 2D fake scenario. Nevertheless, as
for any other biometric recognition method, additional mea-
sures for liveness detection should be taken. Such methods
exist but are a topic in its own and will not be discussed in
this paper.

Different approaches for 3D face recognition have been
published in the past. The Eigenface method for 2D face
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recognition was extended to an Eigensurface approach by
Heseltine et al. [HPA04] and Bai et al. [BYS05] proposed to
use the LDA for a 3D system by replacing the luminance
values with the depth information. An algorithm combin-
ing Eigenfaces and hidden Markov models was introduced
by Achermann et al. [AJB97]. Morphing of face models has
also been investigated Huang et al. [HHB03] and Blanz and
Vetter [BV99] to handle pose and illumination changes.

On the one hand feature extraction methods were in many
cases carried forward from 2D into 3D. On the other hand
the need to transform 3D models into a standardized orienta-
tion (normalization) prior to feature extraction requires addi-
tional efforts, that were in the early day conducted with man-
ual interaction. As a precise solution of this task is of out-
most importance to achieve robustness with regard to pose
variations of the individual in the capture process.

In this paper, an automatic 3D face normalization ap-
proach is introduced, which is used as a basis for a low
cost face recognition method based on histogram features.
In comparison with other face recognition methods, the
proposed system is computationally efficient, thus achiev-
ing higher processing speed in combination with reasonable
recognition results. The outline of the paper is as follows:
Section 2 describes the normalization process of captured
3D facial data, which is crucial for the proposed feature ex-
traction algorithm. Section 3 elaborates on the histogram-
based feature extraction algorithm. Section 4 presents an
evaluation on the experimental results. Finally, section 5
summarizes our results and gives an outlook on further re-
search work.

2. Normalization

3D Face recognition based on geometric characteristics re-
quires a precise reproduction of the physical human faces us-
ing capture devices capable of generating geometric models
of surfaces with an accuracy below one millimeter. Usually
the acquisition of a 3D face model is done using an active
structured light projection approach as shown in [KG06].
Several commercial 3D reconstruction systems offering a
high precision and fast measurements are available e.g.
[P. 06]. These systems consist in a active projecting device
and one or more calibrated video cameras. As the extrin-
sic parameters (outer orientation) and intrinsic parameters
of projector and cameras (inner orientation) are known and
remain stable during the capturing process, each reflecting
object point within the acquisition area allows to calculate
the distance between object and camera using the triangula-
tion method.

The result of this process is then a range image with the
same resolution as the reconstruction camera which can be
transformed into three-dimensional space using the known
camera calibration parameters of the reconstruction cam-
era. An example of an acquired 3D face range image is

shown in figure 1. In three-dimensional space this data can
be transformed to a point cloud representing the geometry
of the object. The resulting points and point distances are
metrically accurate. The adjacency of the grid elements of
the range image remains valid for the calculated points in
three-dimensional space. Thus distances between detected
characteristic facial landmarks in the 3D model, such as the
Anthropometric Landmarks as defined in ISO/IEC 19794-5
PDAM 2 [ISO07] can provide meaningful Bertillonage like
information for subsequent classification steps.

As there are six degrees of freedom for an object relative
to the acquisition system, each acquired object appears in
the frame of reference of the capture device. The acquisition
of living objects, especially when capturing human faces, is
leading inevitably to point clouds which are randomly ro-
tated and translated (pose variations).

To allow the comparison of the datasets resulting from
different capturing session, it is necessary to define a local
coordinate system relative to known object landmarks. This
local coordinate system then allows to align the datasets by
applying the appropriate translation and rotation.

The normalization procedure is a preprocessing step
which yields the appropriate rotation RN

O usually represented
as 3× 3 matrix and translation T N

O represented as an 3 ele-
ment vector for each dataset and applies this transformation
to each dataset accordingly. A normalized object point P′

i

can be obtained from Pi by applying the following transfor-
mation:

P
′

i = R
N
O ·Pi +T

N
O (1)

As we are dealing with a face model, there is some a-priori
knowledge about the shape. A face is usually nearly symmet-
ric with respect to a plane and there are very dominant land-
marks of each face, the subnasion and tip of the nose. These
landmarks correspond to the Anthropometric point name sel-
lion (Se - deepest landmark located on the bottom of the na-
sofrontal angle) and pronasale (Prn - most protruded point
of the apex nasi) as defined in [ISO07].

We use a right-handed coordinate system and we want to
have a face orientation such that the nose is pointing along
the positive z-axis with the nose tip at the origin. The as-
sumed line connecting the eye-centers is parallel to the x-
axis, and the connecting line of nose tip and subnasion is
rotated at an angle of 30◦ to the positive y-axis.

Our approach to find the appropriate dataset consists in
the following steps:

1. Render a range image as shown in figure 1 using a or-
thographic projection matrix. We use a size of 256×256
pixels.

2. Find the nose by finding maximum length convex hull
segments for each horizontal line in the range image. The
endpoints of the convex hull line segments are shown in
figure 2.
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Figure 1: A range image rendered from a three-dimensional

face image.

Figure 2: Endpoints of the convex hull segments overlaid.

3. For each line calculate the virtual intersection point for
the two maximum length segments within an angular
constraint between 45◦ and 90◦ between segments of
each line considering the actual projection parameters.

4. Set up a covariance matrix from the intersection points.
5. Estimate the bridge orientation by applying PCA.
6. Determine a rotation R to align the bridge in an appropri-

ate way to meet our orientation constraints.
7. Apply R to the point-set.
8. Accumulate R to RN

O and T to T N
O .

9. Render a new range image.
10. Detect nose tip and subnasion in the new image by deter-

mining curvature maximum in the range image.
11. Estimate and apply new transformation R to meet the ori-

entation constraints and T to shift the nose tip to the ori-
gin.

12. Accumulate R to RN
O and T to T N

O .
13. Repeat from step 9. until the estimated R and T are below

a given threshold or no convergence is stated after.

As a result of this algorithm we are now able to transform
any face dataset which has a sufficient representation of the
nose region into a common reference orientation, which al-

lows further processing towards a comparison of different
datasets. Figure 4 depicts the normalization result for the
image shown in figure 3.

Figure 3: An example for a raw 3D model of a face.

Figure 4: The transformed 3D model after normalization.

3. Histogram-based feature extraction

The transformed face dataset resulting from the normaliza-
tion stage is used as input to the feature extraction module
described in this section. Thus, we assume a frontal view on
the face model, where the tip of the nose is at the origin in
the Cartesian coordinate system. A straightforward approach
is to compare the normalized 3D model using an appropriate
distance metric for surfaces such as the Hausdorff distance
as proposed by Pan et al. [PW03] [PWWL03]. The downside
of this immediate comparison is poor robustness regarding
normalization inaccuracies and the necessity to store com-
plete 3D model as biometric references, which might need
storage of several megabyte for individual face. Here, we
present an efficient method to extract a compact feature set
from the face surface.

We assume that the distribution of depth values of the nor-
malized face model as shown in figure 4 describes efficiently
the characteristics of an individual facial surface. In order to
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obtain more detailed information about the local geometry,
the 3D model is divided into several sub areas. We divide the
3D model into N stripes, which are orthogonal to the sym-
metry plane of the face. The features are extracted from the
depth value distribution in each sub area. In the following,
we introduce the training process which detects the facial
region within the 3D model and the feature extraction mech-
anism.

Before starting the feature extraction algorithm, a three
dimensional region within the 3D model must be identified,
which includes the bulk of the points belonging to the face
surface. We assume that a point pi in the 3D model corre-
sponds to the point [xi,yi,zi], where zi indicates the depth
value. The tip of the nose corresponds to the origin of the
coordinate system at [0,0,0]. Around the tip of the nose a
rectangle with [Xmin,Xmax] and [Ymin,Ymax] is defined as the
bounding box for the x- and y-value as shown in figure 5. The
points describing the background or clothes are located out-
side of this region. Nevertheless, there are still points, which
do not belong to the face surface like the points in the lower
left and right corner of the rectangle of figure 5, or spikes
in the data set. A depth range limitation for the points in the
rectangle can be applied to filter out the non-facial and mis-
measured points. The depth limitation will be adapted to the
face surface. A simple statistical test is applied to points in
each sub area to find possible maximum and minimum depth
values for facial points, where a number of normalized 3D
models from different subjects are required. The detail of the
training process is shown in section 4.

Figure 5: Selecting the face region in the x-y plane

After the training process, the face region is determined.
The facial points in a normalized image can be selected as
shown in figure 6. Then, the selected facial region is fur-
ther divided into N disjoint horizontal stripes(see figure 7).
The facial points of stripe Sn, n ∈ [1, · · · ,N], are defined as
{pi(xi,yi,zi)}, where xi ∈ [Xmin,Xmax] ,yi ∈

[

Yn,min,Yn,max

]

,
and zi ∈

[

Zn,min,Zn,max

]

. The y range Yn,min, Yn,max and the
depth value range Zn,min, Zn,max depend on the specific sub
area under consideration.

Figure 6: Face region in the x-y plane

Given the bin definition
{

Zn,0,Zn,1 · · · ,Zn,K

}

, where
Zn,0 = Zn,min, Zn,K = Zn,max, the percentage of the subset
of points in Sn with in the range [Zk−1,Zk] is given by

vk,n =
‖{pi(xi,yi,zi)|pi ∈ Sn,Zk−1 < zi < Zk}‖

‖Sn‖
(2)

where k ∈ [1, · · · ,K] and n ∈ [1, · · · ,N].

By counting the points in each depth range we get a fea-
ture vector with k elements for each stripe Sn. The feature
vector corresponds to the histogram of the stripe with re-
spect to the bin definition given above. Figure 7 shows the
division of the face area in several uniform horizontal stripes.
The resulting feature is depicted in figure 8, where the fea-
ture vector corresponding to each stripe is represented as a
row in the image and the illumination indicates the percent-
age of the number of points within the stripe falling into the
respective bins.

Figure 7: Stripes division of the facial points in x-y view

The proposed algorithm adopts a simple statistical analy-
sis to describe the geometrical character of a facial surface.
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Figure 8: An example of feature vector at N = 8 and K = 7

H. Guenter et. al [HLLS01] used the similar method to rec-
ognize different 3D objects. In our case, the precise normal-
ization of face range images enables classification based on
the histogram-features. In comparison to other approaches,
it can be implemented in a very efficient way. The result-
ing feature is robust with respect to small variations of the
facial points like slight normalization errors, or slight facial
expressions and even to larger variations such as spikes and
holes. The distribution for each stripe is already normalized
to the number of points in the stripe such that variations or
normalization inaccuracies for a small number of points have
only minor impact on the feature vector.

Due to the inherent properties of the algorithm prepro-
cessing steps like surface smoothing, interpolation of holes
in the surface or removal of outliers, which are crucial for
e.g. PCA-LDA based recognition method, are not strictly re-
quired. In the next section we present simulation results for
the proposed algorithm.

4. Experimental results

The proposed system has been implemented and tested with
the database of face recognition grand challenge [NIS04]
(FRGC) version 2.0, which consists in 557 subjects with
4950 range images. The normalization algorithm was imple-
mented as proof of concept. The current approach doesn’t
perform optimal, only 4522 range images of the FRGC
database have been normalised correctly. The failure to nor-
malization rate is at 8.65%.

The evaluated facial region in the 3D models can be deter-
mined in a training process. 250 models of different subjects
are randomly chosen from the correctly normalized 3D mod-
els as training data. As the detection and removal of outliers
is computational expensive, we use the percentile of depth
values as the bounding in order to suppress the effect of out-
liers. In figure 9 the candidates of the upper limit for each
sub area is plotted, where the stripe number increases from
the lower jaw to the forehead. As shown in the lower sub fig-
ure, the circle marker of the 99.95 percentile has no signifi-

cant difference to the cross of the local maximum, however,
it is more robust to the outliers in the data set. The variation
of the 99.95, 99.9 and 99.5 percentile depth value in nose
area (the stripes 6 to 10) is relative small shown in the up-
per figure, since the nose tip is defined as the original and
the normalization is oriented according to the form of the
nose. It indicates also that the normalization is very precise.
In other areas such as the mouth and eye regions the differ-
ence is high. Especially, the variation of stripe 15, 16, 17 is
extremely high. In these areas the data is disturbed by the
hair, therefore, their upper limit is taken from the adjacent
area, stripe 14.
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Figure 9: The candidates of the upper limit for each sub area

After determining the facial region, the proposed feature
extraction algorithm is applied to selected facial points in the
correctly normalized 3D models. The face region is divided
averagely into N stripes. The feature vector of each stripe is
calculated in K continuous depth values intervals. The result-
ing feature vector consists of N ×K components. To com-
pare the features, different metrics can be utilized. We tested
our results with three different metrics. Giving two feature
vector V = vi and U = ui, the city block metric is defined as:

L1 = ∑
i

|vi −ui| (3)

The Euclidean distance can be calculated like:

L2 =
√

∑
i

(vi −ui)
2 (4)

And the correlation is shown as follows (Normally, the cor-
relation indicates the similarity of the templates. In order to
compare this metric with the other distance-based compara-
tor, the comparison score C is one minus the correlation co-
efficient.) :

C = 1−
(V −µV )T (U −µU )

σU σV
(5)

where µV , µU are the mean of feature vector, σV ,σU are their
standard deviation.

For N = 67 and K = 6, the ROC curves using differ-
ent metrics is depicted in figure 10. The usage of different
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metrics have strongly effected the verification performance.
The comparator using city block has the best results and the
dash-dot line of its ROC curve is above the dashed line of
Euclidean distance and the dotted line of correlation. The
correlation comparator is slightly better than the Euclidean
distance. Changing the parameter N and K influences the
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Figure 10: The ROC curves using city block, Euclidean dis-

tance and correlation
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Figure 11: False match rates and false non-match rates for

K = 6

robustness and discriminative power of the algorithm. If K

remains constant and the evaluation region is divided into
different segments, it can be seen in figure 11 that both
FNMR and FMR shift to left by decreasing N. Enlarging the
size of each strip increases the number of evaluated points.
Therefore, the robustness of the resulting features is im-
proved, however, their discriminative power reduces. Sim-
ilarly, if we keep N and choose different depth value divi-
sion, both FNMR and FMR moves to left by reducing K as
shown in figure 12. So enlarging the number of evaluated
depth regions strongly enhances discriminative power and
suppresses robustness. The adjustment of K and N are de-
pendent on the size of facial region. Comparing figure 11
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Figure 12: False match rates and false non-match rates for

N = 67
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Figure 13: The ROC curves for different N and K

N K EER
67 3 7.36%
28 6 6.18%
48 6 6.13%
67 6 6.00%
67 12 5.90%

Table 1: EER at different N and K.

and 12, changing K has much strong influence on the ro-
bustness and discriminative power than N. This statement
can also be proved in figure 13. And the performance of the
algorithm is dependent on K and N. The equal error rates
(EER) at different N and K are shown in table 1. The best
equal error rate achieves at 5.89% for N = 67 and K = 12.
The normalization and the histogram-based feature extrac-
tion were also implemented in C++. The processing time of
a 640x480 range image is under 150 ms.
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5. Conclusion and future work

In this paper, we focused on face recognition based on pure
3D shape information. A precise normalization algorithm as
well as an efficient histogram-based feature extraction al-
gorithm were introduced. The feature extraction algorithm
is computational efficient and to a certain extent tolerant to
typical 3D capturing errors like holes and spikes. The exper-
imental evaluation results of the proposed algorithm based
on the FRGC database v2.0 were presented. The simulation
results have proved the feasibility of the histogram-based al-
gorithm for 3D face recognition. The performance of the
proposed feature extraction algorithm currently lies within
the accuracy range of our normalization algorithm.

Our normalization method will be further improved, espe-
cially the investigation of errors, which occurred for some of
the FRGC datasets will be one of our next steps. Moreover,
the robustness of the proposed feature extraction algorithm
to strong expression variation will be evaluated. To improve
the performance of our face recognition pipeline, a weighted
comparison method and a non-uniform division of the face
region will be introduced.
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