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Abstract—Differential Morphing Attack Detection (D-MAD)
aims to detect morphed face images by comparing the suspected
potential morph against a trusted live capture. While the quality
of a suspected image used in a passport or similar will typically
be controlled to avoid degradation by environmental factors such
as lighting, the quality of the trusted live capture could more
easily vary in real conditions. This paper examines how a D-
MAD system is affected by varying trusted live capture quality,
how the same quality variations impact Face Image Quality
Assessment (FIQA), and demonstrates how said FIQA can be
utilized to substantially mitigate the D-MAD performance impact
via another model. The experiments in particular consider four
synthetic and thus clearly controlled image defect types, two
corresponding to environmental lighting variation and two to
blur, all based on approaches from the NIST FATE Quality
SIDD report. The tested D-MAD system is based on deep face
representations and the tested FIQA algorithms are parts of the
recently established OFIQ project.

Index Terms—Biometrics, face recognition, face image quality
assessment, differential morphing attack detection, defects.

I. INTRODUCTION

Morphing attacks on face recognition [1]] systems first com-
bine data from multiple biometric subjects into one morphed
face image, which is then enrolled in the system, e.g. as
part of a passport application. In practice the face recognition
system will compare the enrolled data against a trusted live
capture, i.e. a face image that cannot be another morphed
image. A Differential Morphing Attack Detection (D-MAD)
system likewise compares these image pairs, except to predict
whether the suspected image used for enrolment is a morph
or bona fide (not morph) image. The quality of a face image
may however vary due to various environmental factors such
as lighting, which can be analysed by existing Face Image
Quality Assessment (FIQA) algorithms [2f]. Usually quality
degradations are more likely for the trusted live capture images
taken e.g. at an automated border control gate, whereas the
enrolment process can expect and check for higher image
quality. The contributions of this work can be summarized
as follows:

o The impact of synthetic environmental degradation (sub-|

section I1I-B)) of trusted live capture face images
section TIT-A) on the performance of a D-MAD system
(subsection II1-C) is evaluated (subsection IV-B).

o The response of a set of Face Image Quality Assess-

ment (FIQA) algorithms (subsection III-D)) to the same
synthetic face image degradation is tested as well

section IV-C).

« Based on the calculated potential for D-MAD decision
threshold optimization (subsection IV-B)) and the tested
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Fig. 1. An overview of the D-MAD process with a threshold optimization

model that is using a set of quality scores for the trusted live capture as input.

FIQA algorithms (subsection IV-C), a lightweight D-

MAD threshold optimization model is developed to no-
ticeably mitigate the face image degradation impact on
the D-MAD performance (section V). See [Figure I}

II. RELATED WORK
Our work is closely related and complementary to the

recent work by Franco et al. [3]], which likewise investigated
the impact of face image quality variations on D-MAD.
In the context of automated border control, the analysis in
[3] concluded that D-MAD performance mostly depends on
the quality of the “gate” image (which corresponds to the
“trusted live capture” in our work), as opposed to the quality
of the “enrolment” image (the “suspected” image in our
work). The differences between [3] and our work include
the used evaluation data, the selection of algorithms, and
the analysis approach. While [3] investigated the impact of
illumination uniformity, focus (i.e. sharpness), yaw, pitch and
roll defects, our work is focused on Gaussian blur, motion
blur, overexposure and underexposure as defects of interest.
More specifically regarding the quality impact analysis, our
work employs synthetic quality degradation across different
levels of severity to investigate a selection of defect types in a
controlled manner (subsection III-B)), whereas [3]] investigated
a broader set of FIQA and D-MAD algorithms on data without
strictly controlled quality degradation levels for the individual
defect types prior to FIQA (not to be confused with [3|] using
quality assessment output to group images into quartiles for
the analysis). In this regard our work supports [3]] by confirm-
ing that quality degradation can substantially affect D-MAD
performance. But beyond providing a different kind of quality
impact analysis (section IV), our work also investigates the
use of FIQA to mitigate the D-MAD performance degradation
via automatic D-MAD decision threshold optimization, with

promising results for the examined setup (section V).



TABLE I
THE NUMBER OF SUBJECTS, IMAGES, AND D-MAD PAIRS IN THE USED
[ Dataset | Subjects  Images Pairs |
FERET subset 529 3431 7066
FRGCv2 subset 533 6562 29230
Combined 1062 9993 36296
TABLE 1T

THE NUMBER OF TRUSTED LIVE CAPTURE IMAGES, THE NUMBER OF
SUSPECTED BONA FIDE OR MORPH IMAGES (FOR EACH MORPH TYPE),
AND THE NUMBER OF BONA FIDE OR MORPH D-MAD IMAGE INPUT PAIRS

IN THE USED DATASET (SUBSECTION -A).
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Two earlier and comparatively somewhat less closely related
works by Fu et al. [4] [5] investigated the separability of
(F)IQA output for bona fide vs. morphed images, including the
possibility to repurpose (F)IQA approaches for MAD based
on that separability. One of the more promising results were
obtained by the MagFace [6] approach, which is considered
in our work as well (see but note that this
may not be the exact same MagFace model).

Another more indirectly related work by Borghi et al.
introduced “Video-based Morphing Attack Detection (V-
MAD)”, which considers multiple video frames as the trusted
live capture input for D-MAD. The final V-MAD score output
is then produced by one of various examined fusion strategies.
A subset of these fusion strategies employed FIQA, either
by selecting the best image among the given video frames,
by forming a weighted average of the D-MAD scores across
the frames, or by feeding both the frames’ D-MAD scores
and the quality scores to another machine learning model.
While our work investigates typical D-MAD instead of V-
MAD, it is related to [[7]] insofar that we likewise research the
use of FIQA to enhance (D-)MAD performance via decision
threshold optimization (section V), which could potentially
also be used to design another V-MAD fusion strategy in future
work.

III. EXPERIMENT SETUP
A. Dataset

The experiments in this paper use the MAD dataset created
by Scherhag et al. in [9]], more specifically the variant without
image post-processing. This dataset is based on bona fide (i.e.
non-morph) face images from FERET and FRGCv2
[12]. Pairs of bona fide images were used to generate morphed
images with four different morphing algorithms, namely the
proprietary ‘“FaceFusion”, the open source “FaceMorpher”, a
self-made “OpenCV”-based approach, and “UBO-Morpher”
from the University of Bologna [9] [13]]. For further details
and morphing algorithm example images see [9)].

|
Images -
Suspected Pairs <
Dataset | Trusted | Bona fide Morph | Bona fide Morph 10 20 30 40
FERET subset 786 379 379 786 1570 Underexposure: convert -brightness-contrast -(severity)x(severity)
FRGCV2 subset 1724 982 964 3294 6484
Combined 2510 1511 1493 4080 8054

24 32

Fig. 2. Example images for the four synthetic defect types, with all used
degradation severity steps (0 being no degradation, i.e. the original image
independent of the defect type). The ImageMagick “convert” commands
are shown after the title of each type.

The D-MAD experiments require image pairs, with one
image representing the trusted live capture image (i.e. an image
known to be bona fide, which may vary in quality), and the
other image representing the suspected image which is either
bona fide or morphed (of presumably good quality). The set
of trusted live capture images and the set of suspected images
are disjoint. shows the number of subjects, images, D-
MAD pairs, and [Table TI] provides additional details regarding
the number of trusted/suspected bona fide/morphed images and
the bona fide/morphed D-MAD pairs. The width and height
of all images is 720 and 960, approximately.

B. Synthetic degradation

Synthetic degradation for four defect types is utilized to ap-
proximate potential environmental degradations of the trusted
live capture images in a real scenario, such as automated
border control. The concrete approaches are based on configu-
rations described in NIST FATE Quality SIDD report version
2024-04-26 [14]), which used them for defect evaluations:
“Gaussian blur” (“Resolution” in [14])) to represent e.g. camera
defocus, “Motion blur”, “Overexposure”, and “Underexpo-
sure”. Simple ImageMagick [8] “convert” commands are used
for all four defect types. The command for each synthetic
defect type is parameterised by a single “degradation severity”
integer, for which higher values correspond to worse image
quality.

For the sake of computational efficiency four severity steps
are used for each defect type, and these steps are again
selected within the corresponding ranges used by NIST in
[14). shows these used degradation severity steps with
example images, alongside the original image (“0” degradation
severity).



Note that the same severity steps for different defect types
do of course not necessarily correspond to the same face
image quality degradation according to various FIQA algo-
rithms, hence the FIQA impact evaluation in
Nevertheless, the severity steps for the two blur defect types
appear to result in approximately comparable blur strength, as

indicated by the example images in

C. D-MAD system

The used D-MAD system is a newer variant of the approach
introduced by Scherhag et al. [9]]. It corresponds to the NIST
FATE MORPH [15]] submission with the identifier ‘“hdadfr-
006”. This type of D-MAD system primarily involves a model
trained to asymmetrically compare face recognition feature
vectors from a trusted live capture and a suspected image.
Further details will be described as part of the evaluation

D. Quality assessment

The used Face Image Quality Assessment (FIQA) algo-
rithms are measures provided by the “Open Source Face Image
Quality” (OFIQ) project [16]] [[17]. The concrete version used
in this paper is the GitHub repository 2024-05-10 state the
OFIQ Python adapter fork [18]]. More specifically, the follow-
ing OFIQ measures, which presumably are more relevant to
the considered defect types (subsection III-B)), are utilized:

o Sharpness: For the synthetic defect types “Gaussian blur”
and “Motion blur”. This measure consists out of a hand-
crafted part followed by a random forest model.

o Over-Exposure-Prevention: For the defect type “Overex-
posure”. This is a hand-crafted measure.

o Under-Exposure-Prevention: For the defect type “Under-
exposure”. This is a hand-crafted measure.

o Unified: For all defect types. This measure is a MagFace
[[6] model, i.e. a model simultaneously trained both for
face recognition and for unified FIQA, with only the latter
being relevant here.

OFIQ provides quality score output in the [0, 100] integer

range for all of these measures, so that higher values are
intended to indicate better facial biometrics utility.

IV. EVALUATION
A. Image processing failures

Both the D-MAD system and OFIQ can fail to process
an image, and such failure cases did occur for some of the
degraded images: For the defect type “Overexposure” there
were approximately 0.01% OFIQ failure cases at degradation
severity 40 (the highest used setting). For “Gaussian blur”
there were approximately 0.05% and 0.27% D-MAD failure
cases at severity 5 and 7, respectively. Lastly and most
notably, for “Underexposure” comparatively larger percentages
of failure cases occurred for both OFIQ and D-MAD, as
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Fig. 3. D-MAD and OFIQ image processing failures (subsection IV-A) for

the “Underexposure” defect type.

shown in[Figure 3] Images for which such complete processing
failure cases occurred are simply not considered as part of

the corresponding distributions in the following evaluation.
The reasoning is that an automated system in an operational
scenario should analogously deny the use of images that
cannot be processed properly, instead of e.g. simply assum-
ing worst-case values for such cases (especially for the D-
MAD part). The overall conclusions that can be drawn from
the following evaluations would however likely not change
regardless, since arguably only the “Underexposure” defect
type involves substantial failure case percentages. Besides
complete image processing failure cases, individual OFIQ [/16]]
measures may fail as well. For these cases the overall OFIQ
image processing was technically successful and other relevant
measures for the same image may not have failed, so the
affected measures’ output is set to the worst quality score,
which is 0. In an operational scenario one image could then
for example be discarded based on the quality scores from
multiple OFIQ measures. Or these quality scores could be used
to adjust the D-MAD score threshold. The latter approach is
examined in

B. D-MAD impact

This part of the evaluation examines the impact of image
degradation on the D-MAD decisions. D-MAD scores are
floating-point values in the range [0,1], with higher values
indicating a morphed image. These scores are computed by
the D-MAD system previously described in
which compares potentially degraded but trusted live capture
images against a corresponding suspected image of presum-
ably good quality (e.g. a potentially morphed passport image).
Binary D-MAD decisions are then derived from the D-MAD
scores via a simple threshold comparison. The used default
threshold for the examined system is 0.5, so that scores above
that threshold imply a morphed image, while scores below or
equal to that threshold conversely imply a bona fide image.

The evaluation results in show that image degrada-
tion of the trusted live capture tends to decrease the percentage
of correct D-MAD decisions for bona fide images, while the
percentage for morphed images increases. This is because the
D-MAD decisions’ underlying D-MAD scores tend to increase
due to the image degradation. Of the defect types, “Underex-
posure” distinctly yielded the strongest impact. And “Gaussian
blur” notably had much lower impact than “Motion blur” for
higher severity settings, despite the seeming similarity of the
blur strengths visible for example in

Note that the model which produces the D-MAD scores was
trained in part on the evaluation dataset without degradation
(subsection TII-A), which means that it may be more effective
here than it might be for other data. The evaluation results
demonstrate that this potential advantage does not prevent per-
formance impacts due to image degradation for this particular
kind of D-MAD system. If you are interested in a general
D-MAD performance evaluation of various systems, refer to
NIST FATE MORPH [15] (the submission for the used D-
MAD system is “hdadfr-0067).
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Fig. 4. Each plot shows the trusted live capture image degradation impact on the percentage of correct D-MAD decisions for one of the four defect types (see
the title above each plot), using the default D-MAD decision threshold constant 0.5 described in The percentages are plotted on the Y-axis
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(higher Y-axis values indicate better image quality) for one of the four defect types (see the title above each plot). As indicated in the legends below the
plots, the FIQA algorithms are categorized as either “related” (solid curves) or “unrelated” (dashed curves) with respect to the defect type. “Related” FIQA
algorithms are expected to respond to the degradation, while the “unrelated” ones are expected to be mostly unaffected. The curves show the mean quality
score, triangles show the minima/maxima, and rotated (vertical) histograms additionally indicate the quality score distributions.

If the D-MAD threshold could be optimized separately for
each trusted live capture, then the image degradation impact
could be mitigated. This mitigation could be quite substantial,
as illustrates in contrast to [Figure 4} [Figure 5| more
specifically shows the D-MAD decision impact with thresholds
optimized for each defect type severity, so that the worst
correct decision percentage (i.e. the lowest Y-axis value among
the curves) remains as high as possible. In other words, this
figure shows the results using a different threshold for each
degradation configuration to keep the worst-case as benign as
possible, if the correct D-MAD decisions are already known.
This knowledge is of course not available in an operational
scenario, else the D-MAD system would not be required, but
this data reveals to what extent such operational optimization
may be possible. D-MAD threshold optimization that can
actually be used in an operational scenario would have to
e.g. base the optimization on quality assessment data for the
trusted live capture, which is investigated in using
the thresholds computed here as model output training targets.

C. FIQA impact

shows the impact of the image degradation on
the quality score output of the OFIQ measure selected

in whereby the curves are grouped by the
measures being either “related” or “unrelated” to each defect
type. This analysis is analogous to the D-MAD impact analysis
from the prior in terms of the defect types
and severity settings, but here the Y-axis represents the quality
scores scaled to the [0, 1] range, with lower quality indicating
stronger degradation.

If the impact on the quality scores correlates with the impact
on the D-MAD scores across the degradation configurations,
then it should be possible to use these quality scores to e.g.
only allow images with a certain quality to be used for D-
MAD, or to automatically optimize the D-MAD threshold, the

latter being investigated in
According to the “Unified” OFIQ measure’s

quality scores appear to consistently fall with increasing
degradation severity for all of the defect types.
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As to be expected, the “Sharpness” measure is barely
affected by the unrelated defect types “Overexposure” and
“Underexposure”, and the quality scores fall of consistently
for the “Motion blur” defect type. For “Gaussian blur” the
score distribution unexpectedly increases for the lowest non-
zero degradation severity (1), before rather sharply falling
to the lowest quality score value possible (0) for the higher
severity settings. Notice that this response to the two blur types
is converse to the previously shown D-MAD impact, where
“Motion blur” clearly led to a stronger impact than “Gaussian
blur”.

The two OFIQ measures “Under-Exposure-Prevention” and
“Over-Exposure-Prevention” are approximately unaffected by
the two unrelated blur defect types, and the quality scores of
both respond to their respective defect types ‘“‘Underexposure”
and “Overexposure”, i.e. again as expected. A likely rather
unimportant minor impact can also be observed on “Under-
Exposure-Prevention” for “Overexposure” degradation, and
vice versa on “Over-Exposure-Prevention” for “Underexpo-
sure” degradation, the former impact being a little more pro-
nounced than the latter since the “Under-Exposure-Prevention”
quality scores start at a slightly lower value for the non-
degraded images.

V. D-MAD THRESHOLD OPTIMIZATION
A. Model training

illustrates the concept. For one given trusted live
capture, the corresponding quality scores of the four examined
OFIQ [16] measures are used as the input of the model. The
output is the D-MAD score threshold, which can then be
used instead of the D-MAD system’s default threshold (0.5)
to obtain a D-MAD decision from the D-MAD score.

The training setup’s targeted output values are the optimal

D-MAD score thresholds computed in the

analysis (Figure 5), for all the previously examined degrada-
tion configurations (including no degradation).

To train the model the dataset is randomly split into ap-
proximately 10% training data, 10% validation data, and 80%
test data. The training data refers to the data with which a
model is directly trained, and the performance of different
model variants on the validation data is used to select one final
model. Said validation data performance is computed in terms
of the Root Mean Square Error (RMSE) between a model’s
predicted D-MAD threshold and a known targeted threshold
optimum for all images in the validation data. This final model
is then evaluated on the test data, analogously to the D-MAD
decision evaluation in |[subsection 1V-B| (Figure 4).

Among the considered model variants, the one that yielded
the best validation results was a “Histogram-based Gradient
Boosting Regression Tree” model. More specifically, we used
a Python implementation from the “scikit-learn” [[19]] pack-
age at version 1.2.2, namely “sklearn.ensemble.HistGradient
BoostingRegressor”, with the maximum number of itera-
tions/trees set to 200.

Other considered model variants from the same Python
package were “SVR”, “DecisionTreeRegressor” (with Ad-
aBoost), “RandomForestRegressor”, “ExtraTreesRegressor”,
“KNeighborsRegressor”, and “MLPRegressor”, with multiple
configuration parameter details that are omitted for brevity
here. Various small custom artificial neural networks were
also considered, using PyTorch [20] (“torch” package version
2.0.1). All of these other model variants did however yield
worse validation data performance.

While the computational performance shouldn’t be a con-
cern for any of these model variants, the selected “HistGradi-
entBoostingRegressor” model coincidentally also exhibits an
especially good computational performance among them, with
the training requiring less than one second (not including data
loading/saving time), and the model predictions for the valida-
tion data performance computation requiring less than 100ms.
In an operational scenario the computational requirements
would thus predominantly stem from the D-MAD system and
the OFIQ measures.




B. Model results

shows the results on the test data part of the dataset
in terms of the correct D-MAD decision percentages with and
without the model’s threshold optimization. One the one hand,
the results without the model use the default threshold, i.e.
0.5 as previously mentioned in analogously
to the full dataset results in On the other hand,
results that use the model for threshold optimization involve a
different D-MAD score threshold for each trusted live capture,
as explained in the prior

Using the model’s threshold optimization clearly improves
the overall D-MAD decision performance across all defect
types in this evaluation, despite the model only using four
OFIQ measure quality scores as input. Since the percentages
of correct bona fide D-MAD decisions was most affected
by the degradation in this setup, they now benefit from the
model’s optimized thresholds. Conversely, the percentage of
correct morph D-MAD decisions can be slightly decreased
when the model is used. This is likely due to the training’s
focus on worst-case optimization (i.e. because the worst-case
optimization thresholds from were used for training,
as previously noted). Targeting different thresholds during
training could alternatively avoid the slight impact on the
correct morph D-MAD decision percentage at the cost of a
slightly reduced bona fide decision improvement, if that were
preferable for an operational setup. The same could also be
achieved without training changes via the addition of a small
offset constant to the model’s threshold output.

VI. CONCLUSION

The experiments demonstrated that blur and exposure degra-
dation can substantially affect D-MAD performance (subsec
[tion TV-B)). Underexposure had a stronger D-MAD impact than
overexposure (subsection IV-B)), despite lower settings for the
same degradation synthesis command type (Figure 2)), and
synthetic “motion blur” had a stronger impact than Gaussian
blur at roughly comparable settings
lure 2)). As expected, the unified OFIQ measure (MagFace [6])
responded to all defect types, whereas the response of the other
examined OFIQ measures depended more on the defect type

(subsection IV-C)). Finally, a lightweight but effective D-MAD

threshold optimization model was trained, using only used the
examined OFIQ measures as input (section V).

Potential future works could for example examine other
types of D-MAD and FIQA systems, other morphing algo-
rithms, other forms of degradation, and other face image
datasets in general. Future works could also focus in particular
on the D-MAD threshold optimization, or they could exam-
ine the direct improvement of D-MAD models without the
creation of separate models.
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