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ABSTRACT
The vulnerability of face, fingerprint and iris recognition systems to
attacks based on morphed biometric samples has been established
in the recent past. However, so far a reliable detection of morphed
biometric samples has remained an unsolved research challenge. In
this work, we propose the first multi-algorithm fusion approach to
detect morphed facial images. The FRGCv2 face database is used
to create a set of 4,808 morphed and 2,210 bona fide face images
which are divided into a training and test set. From a single cropped
facial image features are extracted using four types of complemen-
tary feature extraction algorithms, including texture descriptors,
keypoint extractors, gradient estimators and a deep learning-based
method. By performing a score-level fusion of comparison scores
obtained by four different types of feature extractors, a detection
equal error rate (D-EER) of 2.8% is achieved. Compared to the best
single algorithm approach achieving a D-EER of 5.5%, the D-EER
of the proposed multi-algorithm fusion system is almost twice as
low, confirming the soundness of the presented approach.
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1 INTRODUCTION
In past years, researchers have pointed out diverse potential vulner-
abilities of biometric recognition systems. Proposed attacks, which
aim at gaining unauthorized access to the system, can be coarsely
categorized into presentation attacks and software-based attacks
[1]. Presentation attacks refer to a presentation of an attack instru-
ment (e.g. print outs or electronic displays [2]) to the biometric
capture device with the goal of interfering with the operation of the
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(a) Subject 1 (b) Morph (c) Subject 2

Figure 1: Examples for bona fide and morphed cropped face
images

biometric recognition system [3]. To launch software attacks, e.g.
substitution attacks or overriding one of the inner modules of the
system, an attacker requires knowledge about the inner modules
of the biometric system together with access to some of the system
components.

Recently, attacks on face and fingerprint recognition systems
based on morphed biometric images and templates have been pre-
sented [4–7]. Morphing techniques can be used to create artificial
biometric samples, which resemble the biometric information of
two (or more) individuals in image and feature domain. If morphed
biometric images or templates are infiltrated to a biometric recog-
nition system the subjects contributing to the morphed image will
both (or all) be successfully verified against that single enrolled
template. Hence, the unique link between individuals and their
biometric reference data is not warranted. Fig. 1 shows an example
of morphing two faces in the image domain.

Such attacks pose severe security threats to biometric systems,
in particular to the issuance and verification process of electronic
travel documents [4]: black-listed criminal offenders can use an
authentic passport complying with all physical safety features to
enter a country with the identity of an accomplice when performing
three basic steps: (1) find a rather lookalike accomplice, (2) morph
passport face photos of both, possibly utilizing free software avail-
able on the internet, and (3) the accomplice applies for a passport;
the passport manufacturer will then issue an authentic passport
equipped with the morphed biometric reference image and other
identity attributes of the accomplice, which can be used to enter
a country by both subjects. Different commercial face recognition
systems have been found to be highly vulnerable to this type of
attack [4]. Due to a high intra-class variability in human faces, face
recognition systems are operated at false match rates (FMRs) as
high as 0.1% to achieve acceptable false non-match rates (FNMRs).
That is, an automated detection of morphed face images is vital to
retain the security of operational face recognition systems.

https://doi.org/10.1145/nnnnnnn.nnnnnnn
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Figure 2: Overview of the proposed multi-algorithm fusion approach to detect morphed facial images

In this work, we conduct comprehensive evaluations on a dataset
of 2,210 ICAO compliant face images of the FRGCv2 face database
[8] from which we automatically generate a total of 4,808 morphed
face images of high quality. It is demonstrated that a commercial
of-the-shelf (COTS) face recognition system [9] is highly vulnerable
to the above mentioned attack using the generated morphed face
images. In order to prevent from such attacks we propose a multi-
algorithm fusion approach to detect morphed face images. Four
different types of feature extraction algorithms are employed: tex-
ture descriptors, keypoint extractors, gradient estimators and a deep
learning-based method; it is shown that the detection performance
can be substantially improved in a multi-algorithm score-level fu-
sion, which maximizes the discriminativity of processed informa-
tion. Compared to the best single algorithm approach achieving
a D-EER of 5.5%, the proposed score-level fusion of comparison
scores obtained by four different feature extractors yields a D-EER
of 2.8%.

The remainder of this paper is organized as follows: related
works are briefly summarized in Sect. 2. The proposed system is
described in detail in Sect. 3. Experimental results are reported and
discussed in Sect. 4. Finally, conclusions are drawn in Sect. 5.

2 RELATEDWORK
Attacks based on morphed biometric samples were first introduced
by Ferrara et al. [4]. Motivated by security gaps in the issuance
process of electronic travel documents, the authors showed that
commercial face recognition software tools are highly vulnerable
to such attacks, i.e. different instances of images of either subject
are successfully matched against the morphed image. In their ex-
periments, decision thresholds yielding a FMR of 0.1% have been
used, according to the guidelines provided by the European Agency
for the Management of Operational Cooperation at the External
Borders (FRONTEX) [10]. In a further study, the authors show that
morphed face images are realistic enough to fool human examiners
[11]. Scherhag et al.[5] reported moderate detection performance
for benchmarking several general purpose texture descriptors used
in conjunction with machine learning techniques to detect morphed
face images. With respect to the above attack scenario, it is stressed
that a detection of morphed face images becomes even more chal-
lenging if images are printed and scanned. Hildebrandt et al.[7]
suggest to employ generic image forgery detection techniques, in

particular multi-compression anomaly detection, to reliably detect
morphed facial images. Kraetzer et al.[12] evaluate the feasibility of
detecting facial morphs with keypoint descriptors and edge opera-
tors. The benefits of deep neural networks for detecting morphed
images has been recently investigated by Ramachandra et al.[13].
Ferrara et al.[6] also presented two different methods to morph
fingerprints in image and feature domain. For a decision thresh-
old corresponding to a FMR of 0.1%, it is shown that commercial
fingerprint recognition systems are also highly vulnerable to such
attacks. Since fingerprint enrolment is usually done live in the is-
suance process of electronic travel documents, the authors argue
that manufactured fake fingertips may be presented.

Gomez-Barrero et al.[14] proposed the first theoretical frame-
work for measuring the vulnerability of biometric systems to at-
tacks. Evaluations are conducted for diverse biometric systems
where expected comparison scores of attacks based on morphed
images or templates are directly derived from the mated and non-
mated distributions of a face, fingerprint and iris recognition system.
The authors identified key factors which take a major influence
on a system’s vulnerability to such attacks, e.g. the shape of gen-
uine and impostor score distributions or the FMR the system is
operated at. Since there is no standardised manner to evaluate the
vulnerability of biometric systems to attacks based on morphed
images or templates, Scherhag et al.[15] introduced new metrics
for vulnerability reporting (see Sect. 4), which strongly relate to
the metrics defined in [16]. In addition, the authors provide rec-
ommendations on the assessment of morphing techniques. It is
emphasized that unrealistic assumptions with respect to the quality
of morphed biometric samples might cloud the picture regarding
the performance of detection algorithms. In summary, it becomes
clear that research on attacks based on morphed biometric samples
is still in statu nascendi. Nonetheless, at the time of this writing we
see an increasing interest in this topic and the results of ongoing
activities of different research labs are expected to be presented
across diverse platforms in the near future. Eventually, it is impor-
tant to note that so far there is no publicly available database of
morphed face images and no publicly available morph detection
algorithms.
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Figure 3: Example for BSIF responses

(a) Subject 1 (b) Morph (c) Subject 2

Figure 4: Example for SURF keypoint detection

3 PROPOSED SYSTEM
The proposed system, which is depicted in Fig. 2, comprises three
key modules, (1) face pre-processing, (2) multi-algorithm feature
extraction and (3) score-level fusion and decision; in the following
subsections, all modules are described in detail.

3.1 Face pre-processing
In the pre-processing stage the face of a subject is detected and nor-
malized according to eye coordinates detected by the dlib landmark
detector [17]. Subsequently, the normalized region is cropped to
320×320 pixels to ensure that the detection algorithm is only ap-
plied to the facial region. Finally, the cropped face part is converted
to a grayscale image.

3.2 Multi-algorithm feature extraction
At feature extraction the pre-processed face image is optionally di-
vided into multiple cells to retain local information. That is, feature
extractors are applied separately on texture cells and the final fea-
ture vector is formed as a concatenation of feature vectors extracted
from each cell. We employ the following four types of feature ex-
traction methods, where up to two algorithms are considered per
type:

(1) Texture descriptors: Local Binary Patterns (LBP) [18] and Bi-
narized Statistical Image Features (BSIF) [19] are extracted
from cropped face images. For details on these texture de-
scriptors the reader is referred to [18, 19]. While LBP simply
processes neighbouring pixel values of each pixel, BSIF uti-
lizes specific filters learned from a set of images. Obtained
feature values are stored in a corresponding histograms. The
use of generic texture descriptors has shown to be successful
in diverse texture classification problems. An example of
BSIF applied to the images of Fig. 1 is depicted in Fig. 3. By
testing different spatial sampling rates the best configuration

(a) Subject 1 (b) Morph (c) Subject 2

Figure 5: Example for sharpness features (two dimensions)

for LBP and BSIF was determined, thus, a 3×3 LBP-patch and
5×5 BSIF filter set extracting 12 bit per pixel are employed.

(2) Keypoint extractors: Scale Invariant Feature Transform (SIFT)
[20] and Speeded Up Robust Features (SURF) [21] extract
sets of local keypoints. For details on keypoint detection, the
extraction of keypoint descriptors and keypoint matching
the reader is referred to [20, 21]. Keypoint extractors are
employed, since morphed (averaged) images are expected to
contain fewer key locations, which are defined as maxima
and minima of the result of difference of Gaussians function.
That is, the amount of detected keypoints is used as descrip-
tive feature. Fig. 4 shows an example of SURF keypoints
detected in the images of Fig. 1.

(3) Gradient estimators: Histogram of Gradients (HOG) and sharp-
ness features are extracted from the normalized grayscale
images. For further details to HOG the reader is referred
to [22]. As a sharpness feature the mean of the gradient in
two dimensions are calculated. The use of gradient-based
methods is motivated by fact that due to the morphing pro-
cess high frequency changes are reduced and, hence, the
steepness of gradients is decreased. An example of sharp-
ness features extracted from the images of Fig. 1 is depicted
in Fig. 5.

(4) Deep learning-based method: we employ the OpenFace [23]
algorithm in which rescaled images of 96×96 pixels are fed
to the default pre-trained Deep Neural Network (DNN) to
obtain a 128 dimensional face representation. This algorithm
is applied to the pre-processed face image (no division into
texture cells is applied). The use of Deep Facial Features
(DFF) is motivated by recent advances in face recognition.

Since the above listed types of feature extraction techniques pro-
cess images entirely different it is expected that they complement
each other. Hence, it is expected that combinations of different
types of feature extractor improve the performance of a detection
subsystem in a multi-algorithm score-level fusion scenario.
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Table 1: Training and test set used for experimental evaluations (a detailed list of used images will be published on the follow-
ing website: currently-blinded-for-review)

Training set Test set
Gender No. of subjects No. of images Bona fide images Morphed images No. of subjects No. of images Bona fide images Morphed images
Male 59 2,819 1,166∗ 1,653 58 2,210 499 1,711
Female 40 2,073 1,332∗ 741 39 1,165 462 703
All 99 4,892 2,498∗ 2,394 97 3,375 961 2,414

∗ in the training set bona fide images are horizontally mirrored

3.3 Score-level fusion and decision
In the training stage feature vectors are extracted for each algorithm
and support vector machines (SVMs) are trained to distinguish be-
tween bona fide and morphed face images using a disjoint training
set. For a given face image the SVMs of each single algorithm gen-
erate a normalized attack detection score in the range [0, 1]. In
the fusion stage the sum-rule fusion of normalized scores is ap-
plied. In the context of biometric fusion, score-level fusion using
the sum-rule with proper normalization has been observed to result
in competitive biometric performance [24].

4 EXPERIMENTS
In the following subsections, we describe the experimental setup,
conduct a vulnerability assessment of a COTS face recognition
system to attacks based on the generated morphed face images and
report and discuss the detection performance of proposed system.

4.1 Experimental setup
Experiments are performed on a subset of the FRGCv2 face data-
base. A total number of 2,210 frontal faces with neutral expression
have been manually chosen and ICAO compliance has been verified,
i.e. the distance between the eyes of a face has to be at least 90
pixels [25]. Based on this subset 4,808 morphed faces have been
automatically generated for pairs of subjects of same gender using
the OpenCV library. Further example images of bona fide and mor-
phed face images are shown in Fig. 6. The division of images into
training and test sets which has been chosen to obtain a balance
between bona fide and morphed images during training is listed in
Table 1.

4.2 Vulnerability assessment
The vulnerability of a COTS face recognition system to attacks
based on the generated morphed face images is assessed according
to the metrics specified in [15], in particular, in terms of Mated
Morph Presentation Match Rate (MMPMR). This metric is an adap-
tation of the general Impostor Attack Presentation Match Rate
(IAPMR) introduced in ISO/IEC 30107-3 [16] which is defined as
the proportion of attack presentations using the same presentation
attack instrument species in which the target reference is matched.
However, in the adaptation the MMPMR covers the fact that not
one target subject (contained in the morphed reference) is matched
- but both subjects who earlier contributed to the morphed image
are expected to be matched if the morphing attack is considered to
be successful.

When employing the default decision threshold of the COTS
face recognition system a MMPMR of 1 is obtained. This means all

(a) Subject 1 (b) Morph (c) Subject 2

Figure 6: Examples of bona fide andmorphed face images of
subjects of same gender, ethnicity and age group

face images of subjects contributing to a morphed face image are
successfully matched against it, hence, the attacks reveal a success
chance of 100%.

4.3 Performance evaluation
The performance of the detection algorithms used in this work is
reported according to metrics defined in ISO/IEC 30107-3 [16]. The
bona fide Presentation Classification Error Rate (BPCER) is defined
as the proportion of bona fide presentations incorrectly classified as
attack presentations in a specific scenario. The Attack Presentation
Classification Error Rate (APCER) is defined as the proportion of
attack presentations using the same presentation attack instrument
species incorrectly classified as bona fide presentations in a spe-
cific scenario. Further, the BPCER-10 and BPCER-20 represent the
operation points yielding an APCER of 10% and 5%, respectively.
Additionally, to be comparable to published works, the Detection
Equal Error Rate (D-EER) will be reported.

Performance rates of the best two configurations per algorithm
are listed in Table 2. The corresponding detection error trade-off
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Table 2: Single algorithm performance

Algorithm D-EER BPCER-10 BPCER-20
LBP 5.5 % 2.2 % 6.2 %
LBP6×6 5.6 % 2.1 % 6.4 %
BSIF 7.1 % 4.8 % 13.8 %
BSIF2×2 7.9 % 6.0 % 14.8 %
SIFT8×8 10.2 % 10.4 % 17.1 %
SIFT10×10 10.9 % 11.8 % 18.7 %
SURF 15.7 % 40.1 % 68.6 %
SURF2×2 18.9 % 29.4 % 54.2 %
Sharp4×4 16.4 % 20.4 % 35.4 %
Sharp3×3 19.4 % 44.1 % 70.3 %
HOG 12.1 % 15.0 % 24.9 %
HOG3×3 26.3 % 61.6 % 78.6 %
DFF 30.6 % 64.4 % 78.4 %

Table 3: Performance of fusions of two algorithms

Rank Algorithm D-EER BPCER-10 BPCER-20
1 LBP6×6 + SIFT8×8 3.1 % 1.6 % 2.7 %
2 BSIF + SIFT8×8 4.3 % 2.1 % 4.0 %
3 LBP + DFF 4.5 % 2.8 % 4.2 %
4 LBP + Sharp4×4 5.5 % 2.3 % 6.2 %
5 LBP + LBP6×6 5.5 % 2.2 % 6.2 %

(DET) curves are depicted in Fig. 7. Optional divisions of the pre-
processed face image into texture cells are indicated accordingly.
Competitive detection rates are achieved for texture descriptors
where LBP achieves the best performance of D-EER=5.5%. Mod-
erate detection accuracy is achieved for keypoint extractors and
gradient estimators. Applying the default net which is designed for
recognition purposes DFF reveals the highest D-EER. However, it
is expected that application-specific training will significantly im-
prove deep learning-based approaches with the potential drawback
of data-overfitting. The above listed configurations of algorithms
will be used in all fusion experiments and the five best performing
combinations of algorithms will be reported.
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Detection performance rates of combinations of two algorithms
are shown in Table 3 and according DET curves are plotted in Fig.
8. We observe that a combination of different types of feature ex-
tractors significantly improves D-EERs. This is emphasized by the
observation that a combination of the worst performing DFF and
LBP is ranked third of all combinations of pairs of feature extrac-
tors. Note that, a combination of LBP and LBP6×6 leads to the same
detection performance as the single use of LBP. Table 4 summarized
the five best performing combinations of three algorithms. The cor-
responding DET plot is shown in Fig. 9. Slight performance gains in
terms of D-EER are observed compared to combinations of two algo-
rithms. Again, a combination of three different types of algorithms
obtains the best detection performance. Interestingly, the fusion
ranked second combines both texture descriptors which suggests
that the learned filters of BSIF complement LBP. It is important to
note that improvements in terms of BPCER-10 and BPCER-20 are
more pronounced compared to combinations of two algorithms.
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Table 4: Performance of fusions of three algorithms

Rank Algorithm D-EER BPCER-10 BPCER-20
1 LBP6×6 + SIFT8×8 + Sharp4×4 3.1 % 1.6 % 2.6 %
2 LBP + BSIF + SIFT8×8 3.4 % 1.2 % 2.6 %
3 LBP6×6 + SIFT10×10 + Sharp4×4 3.6 % 1.6 % 3.0 %
4 LBP + SIFT8×8 + DFF 4.0 % 1.7 % 3.1 %
5 LBP + LBP6×6 + SIFT8×8 4.2 % 1.2 % 3.2 %

Table 5: Performance of fusions of four algorithms

Rank Algorithm D-EER BPCER-10 BPCER-20
1 LBP + BSIF2×2 + SIFT8×8 + DFF 2.8 % 0.7 % 1.8 %
2 LBP + LBP6×6 + SIFT8×8 + SIFT10×10 3.0 % 1.3 % 2.2 %
3 LBP + BSIF + SIFT8×8 + Sharp4×4 3.5 % 1.2 % 2.6 %
4 LBP + SIFT8×8 + SIFT10×10 + HOG 3.9 % 2.1 % 3.3 %
5 LBP + SIFT8×8 + Sharp4×4 + DFF 3.9 % 1.6 % 3.1 %
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Also, characteristics of DET curves suggest more robustness (less
BPCER oscillation across operation points) for combinations of
three algorithms. Finally, performance rates of combinations of
four algorithms are listed in Table 5 and resulting DET plots are
shown in Fig. 10. Additional reductions of error rates are obtained
in particular, in terms of BPCER-10 and BPCER-20. Compared to
the best single algorithm approach the best combination of four
algorithms, which again combines both employed texture descrip-
tors, almost halves the D-EER to 2.8% and reduces the BPCER-10
and BPCER-20 to 0.7% and 1.8%, respectively.

5 CONCLUSION AND FUTUREWORK
To the authors’ knowledge this work presents the firstmulti-algorithm
fusion approach to detect morphed face images. It is shown that
substantial improvements in detection performance can be achieved
when different types of feature extractors are combined employing
a normalized score-level fusion based on the sum-rule. Based on a
subset of the publicly available FRGCv2 face database morphed face
images are generated and it is shown that a COTS face recognition
system is highly vulnerable to attacks based on those images. With

the presented multi-algorithm fusion approach a practical D-EER
of 2.8% is achieved. In the proposed system the combination of
multiple algorithms can be parallelized easily in order to maintain
computational workload. In general a detection mechanism relying
on numerous algorithms can be expected to be exhibit high robust-
ness. Nonetheless, transferability of the presented approach with
respect to different datasets and morphing techniques yet needs to
be analysed in more extensive future studies. Moreover, the poten-
tial of a weighted fusion of obtained detection scores as well as an
analysis of further classifiers, e.g. random forest, could be subject
to future work.
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