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Abstract—In past years, different researchers have shown
the vulnerability of face recognition systems to attacks based
on morphed face images. More recently, first morph detection
subsystems have been proposed to automatically detect this
kind of fraud. While some algorithms have been reported to
reveal practical detection performance on individual datasets a
systematic analysis of proposed detectors with respect to their
robustness across different databases has remained elusive.

In this work, we evaluate the performance of different morph
detection algorithms across disjoint datasets of 2,745 bona
fide and 14,337 automatically generated morphed face images.
Within a generic evaluation framework a systematic robustness
estimation scheme is proposed to identify reliable detection
algorithms. Finally, the robustness of algorithms which have been
determined as most promising is verified on another disjoint
dataset. Hence, this paper represents the first attempt towards
a comprehensive cross-database performance evaluation and a
systematic evaluation of the robustness of morphed face image
detection algorithms.

I. INTRODUCTION

Morphing techniques can be used to create artificial bio-
metric samples, which resemble the biometric information
of two (or more) individuals in image and feature domain.
If morphed biometric images are infiltrated to a biometric
recognition system the subjects contributing to the morphed
image will both (or all) be successfully verified against that
single enrolled reference data. Hence, the unique link between
individuals and their biometric reference data is not warranted.
In particular face recognition systems have been exposed to be
highly vulnerable to attacks based on morphed face images [1],
[2]. Fig. 1 shows an example of morphing two facial images.

In the recent past, researchers have presented different
approaches to detect morphed face images including general
purpose texture descriptors [2], digital image forensic analysis
[3], keypoint descriptors and edge operators [4] or deep
learning methods [5], [6]. While some of the mentioned
approaches report practical detection error rates these are
commonly evaluated on a dataset of bona fide and morphed
face images which is extracted from a single (in-house) face
database. In such an experimental setup the use of machine
learning-based feature extractors or/and classifier increases the
risk of overfitting, i.e. the robustness of presented morph
detection algorithms with regard to images stemming from
other sources is therefore questionable.

In this paper, we propose a general framework to estimate
the robustness of morph detection algorithms. Four datasets
referred to as training, testing, evaluation and validation which
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Fig. 1: Examples for bona fide and morphed face images

comprise bona fide and morphed face images are extracted
from three different face databases. Different morph detection
algorithms based on texture descriptors, keypoint extractors
and gradient estimators are trained and detection errors are cal-
culated on the test and the evaluation set. Obtained detection
errors serve as input to a robustness estimation function, which
in conjunction with appropriate exclusion criteria, is shown
to reliably predict the detection performance of an algorithm
on the disjoint validation database. Moreover, the presented
evaluation strategy is generic and, hence, transferable to other
pattern classification problems.

This paper is organized as follows: related works are sum-
marized in Sect. II. Sect. III describes the proposed framework
to evaluate the robustness of morph detection algorithms in
detail. The used morph detection subsystems are listed in Sect.
IV. Experimental results are reported and discussed in Sect.
V. Finally, conclusions are drawn in Sect. VI.

II. RELATED WORK

Attacks based on morphed biometric samples were first
introduced by Ferrara et al. [1]. Motivated by security gaps
in the issuance process of electronic travel documents, the
authors showed that commercial face recognition software
tools are highly vulnerable to such attacks, i.e. images of either
subject are successfully matched against the morphed image.
In their experiments, decision thresholds yielding a FMR of
0.1% have been used, according to the guidelines provided
by the European Agency for the Management of Operational
Cooperation at the External Borders (FRONTEX) [7]. In a
further study, the authors show that morphed face images are
realistic enough to fool human examiners [8].



Training Test Evaluation Validation

Database 1 Database 2 Database 3

Creation of morphed face images

δt δe δv

verifyRobustness estimation

θ

Fig. 2: Proposed robustness analysis scheme

Scherhag et al. [2] reported moderate detection performance
for benchmarking several general purpose texture descriptors
used in conjunction with machine learning techniques to detect
morphed face images. In [9] he demonstrated, that an improve-
ment of the detection performance of multi-purpose image
descriptors can be achieved by a fusion of multiple detection
algorithms. Ferrara et al. [10] proposed face demorphing for
morph detection employing a trusted live capture in addition to
the questioned sample. Scherhag et al. [11] analysed multiple
general purpose image feature extractors in this differential
scenario. Further, Hildebrandt et al. [3] suggest to employ
generic image forgery detection techniques, in particular multi-
compression anomaly detection, to reliably detect morphed
facial images. Kraetzer et al. [4] evaluate the feasibility of
detecting facial morphs with keypoint descriptors and edge
operators. The benefits of deep neural networks for detecting
morphed images has been recently investigated by Ramachan-
dra et al. [5] and Seibold et al. [6]. It is important to note
that, apart from [10], published morph detection approaches
are evaluated on images of a single face database. That is, the
transferability of the presented scheme with respect to different
datasets and morphing techniques yet needs to be analysed.

Gomez-Barrero et al. [12], [13] proposed the first theoretical
framework for measuring the vulnerability of biometric sys-
tems to attacks. Evaluations are conducted for diverse biomet-
ric systems where expected comparison scores of attacks based
on morphed images or templates are directly derived from
the mated and non-mated distributions of a face, fingerprint
and iris recognition system. The authors identified key factors
which take a major influence on a system’s vulnerability to
such attacks, e.g. the shape of genuine and impostor score
distributions or the FMR the system is operated at. To evaluate
the vulnerability of biometric systems to attacks based on
morphed images or templates Scherhag et al. [14] introduced
metrics for vulnerability reporting, which strongly relate to
the metrics defined in [15]. In addition, the authors provide
recommendations on the assessment of morphing techniques.
It is emphasized that unrealistic assumptions with respect to
the quality of morphed biometric samples might cloud the
picture regarding the performance of detection algorithms.
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Fig. 3: Robustness estimation function

Eventually, it is important to note that so far there is no
publicly available database of morphed face images and no
publicly available morph detection algorithms.

III. ROBUSTNESS ANALYSIS

In the following subsections, the constituting processing
steps of the proposed analysis and the employed robustness
estimation are described in detail.

A. Processing steps

The proposed robustness analysis which is depicted in Fig. 2
comprises four major processing steps:

1) Data preparation: in the first step three face databases
are used to create face morphs of high quality; the first
database is divided in a training set which is employed to
train classifiers for each feature extractor and a test set.
The remaining two datasets are referred to as evaluation
and validation set.

2) Detection error estimation: first detection error δ ∈ [0, 1]
is estimated on the training set and the optimal decision
threshold θ is calculated. Then corresponding detection
errors are evaluated on the test and evaluation set using
the predefined decision threshold θ. The resulting detec-
tion errors are denoted by δt and δe.

3) Robustness estimation: the robustness (or fragility) is
estimated as a function of δt and δe. In addition, appro-
priate exclusion criteria are defined in order to discard
impractical morph detectors with regard to the employed
algorithms and used parameters.

4) Robustness validation: finally, the robustness of selected
morph detection algorithms is verified on the validation
set.

The presented procedure is designed to minimize the risk
of overfitting. Due to the fact that the proposed robustness
estimation is performed on disjoint datasets overfitting caused
by dataset specific properties, e.g. compression artefacts, is
avoided. Further, potential shifts in the feature space are
considered by the use of a fixed decision threshold.
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Fig. 4: Examples for bona fide and morphed face images
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Fig. 5: Example for BSIF responses

B. Robustness estimation

Let δt and δe denote the detection errors obtained during
performance evaluations on the employed test and evaluation
set, respectively. We suggest to estimate the fragility σ ∈ [0, 1]
of a detection algorithm as,

σ =

{
‖2δe/(δt + δe)− 1‖ if δt + δe 6= 0,
0 otherwise.

(1)

The behaviour of this function is plotted in Fig. 3 where blue
regions indicate robust detection performance. If the relative
difference of detection performance obtained on the test and
evaluation set is small the algorithm is assume to be robust.
Further, it is suggested to define two thresholds, tδ and tσ ,
as exclusion criteria. If max{δt, δe} < tδ ∧ σ < tσ applies
the detection algorithm is identified as robust. The maximum
acceptable detection error is represented by tδ . Similarly,
tσ provides an upper boundary for the maximum relative
difference between detection errors on the test and evaluation
set.

IV. DETECTION SUBSYSTEMS

In the following subsection, we briefly summarize the
employed morph generation, pre-processing, feature extractors
and comparison.

A. Morph generation and pre-processing

In order to morph two face images the dlib facial land-
mark detector [16] is applied to both images. Subsequently,
a Delaunay triangulation is performed to the average of
corresponding points. An affine transform is then applied to
the sets of triangles in both face images resulting in two
warped images which are alpha blended using a alpha value
of 0.5. In the pre-processing stage an image is segmented and
normalized according to eye coordinates detected by the dlib
landmark detector [16]. Subsequently, the normalized region is
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Fig. 6: Example for SURF keypoint detection
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Fig. 7: Example for sharpness features (two dimensions)

cropped to 320×320 pixels using predefined offsets to ensure
that the morph detection algorithm is only applied to the
facial region. Finally, the cropped face part is converted to
a grayscale image. Fig. 4 depicts pre-processed face images
of two subjects and their corresponding morph.

B. Feature extraction

At feature extraction the pre-processed face image is option-
ally divided into 4×4 cells to retain local information. That is,
feature extractors are applied separately on texture cells and
the final feature vector is formed as a concatenation of feature
vectors extracted from each cell. We employ the following
three types of feature extraction methods (two algorithms are
considered per type):

Texture descriptors: Local Binary Patterns (LBP) [17] and
Binarized Statistical Image Features (BSIF) [18] are extracted
from the cropped face images. For details on these texture
descriptors the reader is referred to [17], [18]. While LBP
simply processes neighbouring pixel values of each pixel,
BSIF utilizes specific filters learned from a set of images.
Obtained feature values are stored in a corresponding his-
tograms. The use of these well-established general purpose
texture descriptors has shown to be successful in diverse
texture classification problems. Focusing on morph detection
the process of image morphing is expected to cause changes in
textual properties between bona fide and morphed face images.
An example of BSIF applied to the images of Fig. 4 is depicted
in Fig. 5. By testing different spatial sampling rates the two



TABLE I: Datasets used for experimental evaluations (a detailed list of used images will be published upon acceptance)
Database 1 (FRGCv2) Database 2 (ARface) Database 3 (FERET)

Training Test Evaluation Validation
Gender No. of No. of Bona fide Morphed No. of No. of Bona fide Morphed No. of No. of Bona fide Morphed No. of No. of Bona fide Morphed

subjects images images images subjects images images images subjects images images images subjects images images images
Male 59 2,819 1,166∗ 1,653 58 2,210 499 1,711 76 3,043 193 2,850 104 1,230 149 1,081

Female 40 2,073 1,332∗ 741 39 1,165 462 703 59 1,934 164 1,770 24 3,857 29 3.828
All 99 4,892 2,498∗ 2,394 97 3,375 961 2,414 135 4,977 357 4,620 128 5,087 178 4,909

∗ in the training set bona fide images are horizontally mirrored

best configurations for LBP and BSIF were determined, thus,
3×3 and 9×9 LBP-patches and same sized BSIF filter sets
extracting 8 bit per pixel for 3×3 and 12 bit per pixel for
9×9 are employed.

Keypoint extractors: Scale Invariant Feature Transform
(SIFT) [19] and Speeded Up Robust Features (SURF) [20] ex-
tract sets of local keypoints. For details on keypoint detection,
the extraction of keypoint descriptors and keypoint matching
the reader is referred to [19], [20]. Keypoint extractors are
employed, since morphed images are expected to contain fewer
keypoint locations, which are defined as maxima and minima
of the result of difference of Gaussians function. That is, the
amount of detected keypoints is used as descriptive feature as
it is also suggested in [4]. Fig. 6 shows an example of SURF
keypoints detected in the images of Fig. 4.

Gradient estimators: Histogram of Gradients (HOG) and
sharpness features are extracted from the normalized grayscale
images. For further details to HOG the reader is referred to
[21]. As a sharpness feature the mean of the gradient in two
dimensions are calculated. The use of gradient-based methods
is motivated by the fact that due to the morphing process
high frequency changes are reduced and, hence, the steepness
of gradients is decreased. An example of sharpness features
extracted from the images of Fig. 4 is depicted in Fig. 7.

C. Comparison

Feature vectors are extracted from the training databases
for each algorithm and support vector machines (SVMs) are
trained to distinguish between bona fide and morphed face
images using a disjoint training set. For a given face image the
SVMs of each single algorithm generate a normalized attack
detection score.

V. EXPERIMENTS

In the following subsections, we describe the experimental
setup, conduct a vulnerability assessment of a Custom-Of-
The-Shelf (COTS) face recognition system to attacks based
on the generated morphed face images, report the detection
performance of the used detection systems and perform and
validate the proposed robustness estimation.

A. Experimental setup

According to the described robustness analysis evaluations
are carried out on three databases, namely subsets of the
FRGCv2 (training and test), ARface (evaluation) and FERET
face database (validation). A total number of 2,745 frontal
faces have been manually chosen and ICAO compliance has
been verified, i.e. the distance between the eyes of a face has to
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Fig. 8: Examples of bona fide and morphed face images of
different datasets. Top to bottom: test, evaluation, validation

be at least 90 pixels [22]. Within these subsets 14,337 morphed
faces have been automatically generated for pairs of subjects
of same gender using the OpenCV library. Example images of
bona fide and morphed face images are shown in Fig. 8 which
illustrates the high quality of morphed face images being well
in the quality limits set forth by ICAO and ISO/IEC standards.
Details about employed databases are listed in Table I.

B. Face recognition vulnerability assessment

The vulnerability of a COTS face recognition system to at-
tacks based on the generated morphed face images is assessed
according to the metrics specified in [14], in particular, in
terms of Mated Morph Presentation Match Rate (MMPMR).
This metric is an adaptation of the general Impostor Attack
Presentation Match Rate (IAPMR) introduced in ISO/IEC
30107-3 [15] which is defined as the proportion of attack
presentations using the same presentation attack instrument
species in which the target reference is matched. However, in
the adaptation the MMPMR covers the fact that not only one
target subject (contained in the morphed image) is matched
- but both subjects who earlier contributed to the morphed



TABLE II: Robustness estimation of used morph detectors
Test Evaluation

σ/max{δt, δe}
Validation

System APCER(θ) BPCER(θ) D-EER APCER(θ) BPCER(θ) D-EER APCER(θ) BPCER(θ) D-EER
LBP1,3 13.3% 1.2% 5.5% 0.0% 100.0% 49.8% 0.75 / 0.50 5.1% 32.6% 23.8%
LBP4,3 13.7% 1.2% 5.7% 0.0% 100.0% 49.7% 0.74 / 0.50 6.2% 32.6% 23.1%
LBP1,9 16.8% 10.3% 14.0% 0.0% 99.4% 14.8% 0.57 / 0.49 63.9% 9.6% 20.9%
LBP4,9 16.0% 9.7% 13.2% 0.0% 99.2% 24.2% 0.59 / 0.49 64.5% 9.6% 19.6%
BSIF1,3 6.5% 1.9% 3.3% 0.0% 100.0% 49.9% 0.85 / 0.50 0.0% 79.2% 13.3%
BSIF4,3 8.7% 2.0% 4.5% 0.0% 100.0% 49.9% 0.81 / 0.50 0.8% 45.5% 8.7%
BSIF1,9 22.9% 17.6% 19.7% 0.0% 99.4% 20.7% 0.42 / 0.49 67.8% 0.6% 10.3%
BSIF4,9 22.2% 21.3% 21.4% 1.7% 80.4% 24.8% 0.31 / 0.41 88.1% 0.6% 9.5%
SIFT1 14.0% 22.4% 20.5% 12.3% 71.1% 43.4% 0.39 / 0.41 10.7% 32.6% 24.4%
SIFT4 14.6% 13.0% 13.7% 39.8% 45.4% 41.8% 0.51 / 0.46 27.9% 21.9% 23.3%
SURF1 11.1% 37.6% 15.7% 32.2% 43.4% 33.5% 0.22 / 0.37 24.0% 58.4% 29.6%
SURF4 28.0% 13.6% 18.4% 76.5% 5.6% 37.2% 0.33 / 0.41 62.0% 7.9% 23.9%
Sharp1 21.7% 25.7% 23.4% 26.6% 55.2% 42.0% 0.27 / 0.40 82.7% 10.1% 42.1%
Sharp4 0.0% 99.8% 16.6% 50.0% 0.0% 100.0% 0.00 / 0.50 0.0% 100.0% 43.4%
HOG1 12.4% 12.0% 12.1% 8.8% 42.9% 18.8% 0.36 / 0.25 51.4% 1.1% 12.9%
HOG4 36.2% 28.3% 32.1% 22.9% 47.3% 32.9% 0.04 / 0.35 85.3% 7.9% 36.9%
DFF 31.1% 31.2% 30.6% 32.2% 45.7% 39.0% 0.11 / 0.38 48.0% 20.8% 29.3%

image are expected to be matched if the morphing attack is
considered to be successful.

When employing the default decision threshold of the COTS
face recognition system a MMPMR of 1 is obtained. This
means all face images of subjects contributing to a morphed
face image are successfully matched against it, hence, the
attacks reveal a success chance of 100% on a COTS.

C. Robustness estimation and validation

The Attack Presentation Classification Error Rate (APCER)
is defined as the proportion of attack presentations using
the same presentation attack instrument species incorrectly
classified as bona fide presentations in a specific scenario.
The performance of the detection algorithms is reported ac-
cording to metrics defined in ISO/IEC 30107-3 [15]. The
Bona Fide Presentation Classification Error Rate (BPCER) is
defined as the proportion of bona fide presentations incorrectly
classified as presentation attacks in a specific scenario. The
Detection Equal Error Rate (D-EER), i.e. the operation point
where APCER = BPCER, is used as optimal operation point
which is estimated during training. Based on the evaluated
decision threshold θ, (APCER(θ)+BPCER(θ))/2, will be used
as detection error. Alternatively, other error estimates could be
employed.

The performance of the analysed algorithms for all three
datasets is listed in Table II. For the texture descriptors the
patch size is indicated via a second sub-index, e.g. LBP4,3

corresponds to a division into 4 × 4 cells and a LBP-patch
size of 3×3 pixels. Significant drops in terms of APCER and
BPCER can be observed on the evaluation dataset, i.e. the vast
majority of detection algorithms do not seem to generalize.
The detection performance on evaluation set is generally much
lower than on the other databases caused by the high level of
blurriness of the facial images. The significant gap between
D-EER and the resulting APCER and BPCER values at a
fixed threshold θ can partly be reduced by a calibration of
the systems towards the images, i.e. by an adaptation of
the decision threshold θ. We emphasize on the fact that an
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Fig. 9: Scatter plot of selected morph detectors

evaluation of morph detectors on a single database might
cloud the picture over the actual detection performance. If
the exclusion criteria are set to reasonable thresholds, e.g.
tδ = 0.3 and tσ = 0.4, the only algorithm identified as
robust is HOG1 (emphasized), as can be seen in Fig. 9. Even
if the algorithm shows a moderate performance for both,
evaluation and validation set, the fragility over the datasets
is comparatively low. Moreover, the detection performance
is maintained on the validation database which confirms the
soundness of the proposed robustness estimation. A fusion
of multiple morph detection algorithms, e.g. in [9], might
be expected to be more robust with respect to the analysed
scenario.

VI. CONCLUSION

In this work, we evaluate the performance of different
morph detection algorithms across disjoint datasets of 2,745
bona fide and 14,337 automatically generated morphed face
images. Within a generic evaluation framework a systematic
robustness estimation scheme is proposed to identify reliable



detection algorithms. An evaluation of general purpose image
descriptors employing the proposed framework shows the
high database dependency. This results in alarmingly high
error rates if morph detectors are evaluated across different
databases. That is, for most algorithms an adaptation to each
database is mandatory. In summary, this paper represents the
first attempt towards a comprehensive cross-database perfor-
mance evaluation and a systematic evaluation of the robustness
of morphed face image detection algorithms.
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