
Towards detection of morphed face images in electronic travel documents

U. Scherhag, C. Rathgeb and C. Busch
da/sec - Biometrics and Internet Security Research Group

Hochschule Darmstadt, Germany
{ulrich.scherhag,christian.rathgeb,christoph.busch}@h-da.de

Abstract—The vulnerability of face recognition systems
to attacks based on morphed biometric samples has been
established in the recent past. Such attacks pose a severe
security threat to a biometric recognition system in particular
within the widely deployed border control applications.
However, so far a reliable detection of morphed images has
remained an unsolved research challenge.

In this work, automated morph detection algorithms
based on general purpose pattern recognition algorithms are
benchmarked for two scenarios relevant in the context of
fraud detection for electronic travel documents, i.e. single
image (no-reference) and image pair (differential) morph
detection. In the latter scenario a trusted trusted live capture
from an authentication attempt serves as additional source
of information and, hence, the difference between features
obtained from this face image and a potential morph can
be estimated. A dataset of 2,206 ICAO compliant bona
fide face images of the FRGCv2 face database is used
to automatically generate 4,808 morphs. It is shown that
in a differential scenario morph detectors which utilize a
score level-based fusion of detection scores obtained from a
single image and differences between image pairs generally
outperform no-reference morph detectors with regard to the
employed algorithms and used parameters. On average a
relative improvement of more than 25% in terms of detection
equal error rate is achieved.
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I. INTRODUCTION

Electronic travel documents, e.g. the ePassport, are
equipped with biometric information in order to establish
a strong link between the document and its holder. Facial
images which are printed to the document or integrated
via chips are predominantly used to verify this link, e.g.
by border control agencies or Automated Border Control
(ABC) gates. Automated face recognition represents a
longstanding field of research and a variety of methods
have been proposed over the past three decades [25], [15].
Generic face recognition systems comprise four major
modules: face detection, face alignment, feature extraction,
and comparison, where the latter two are generally con-
ceded as key modules. Due to a high intra-class variability
in human faces across the validity period of an electronic
travel document, face recognition systems at ABC gates
are operated at rather high False Match Rates (FMRs)
to achieve acceptable False Non-Match Rates (FNMRs)
[1], in contrast to other biometric technologies, e.g. iris
recognition [4].

Recently, attacks on face recognition systems based
on morphed biometric images have been presented [6],
[22]. Morphing techniques can be used to create artificial
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Figure 1: Examples for bona fide and morphed face images

biometric samples, which resemble the biometric informa-
tion of two (or more) individuals in image and feature
domain. If morphed biometric images are infiltrated to
a biometric recognition system, e.g. during the issuance
process of an ePassport, the subjects contributing to the
morphed image will both (or all) be successfully verified
against that single enrolled template. Hence, the unique
link between individuals and their biometric reference data
is not warranted. Fig. 1 shows an example of morphing
two facial images.

Such attacks pose severe security threats to biometric
systems, in particular to the issuance and verification
process of electronic travel documents [6]. Black-listed
criminal offenders can use an authentic passport comply-
ing with all physical security features to enter a country
with the identity of an accomplice when performing three
basic steps: (1) find a rather lookalike accomplice, (2)
morph passport face photos of both, possibly utilizing
free software available on the internet, and (3) the ac-
complice applies for an ePassport; the passport manu-
facturer will then issue an authentic passport equipped
with the morphed biometric reference image and other
identity attributes of the accomplice, which can be used
to enter a country by both subjects. Diverse commercial
face recognition systems have been found to be highly
vulnerable to this type of attack [6]. Hence, an automated
detection of morphed face images is vital to retain the
security of operational face recognition systems where two
detection scenarios depicted in Fig. 2 can be distinguished
[21]:

• Single image morph detection: the detector processes
a single image, e.g. an off-line authenticity check of
an electronic travel document (this scenario is also
referred to as no-reference morph detection);

• Image pair morph detection: a trusted live capture
from an authentication attempt serves as additional
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Figure 2: Morph detection scenarios

source of information for the morph detector, e.g.
during authentication at an ABC gate (this scenario
is also referred to as differential morph detection).
Note that all information extracted by no-reference
morph detectors might as well be leveraged within
this scenario.

In this work, it is demonstrated that a Commercial Of-
The-Shelf (COTS) face recognition system is highly vul-
nerable to the above mentioned attack using the generated
morphed face images. The morph detection performance
of general pattern recognition algorithms including texture
descriptors, keypoint extractors, gradient estimators and
a deep learning-based method is benchmarked for both
mentioned scenarios. Within the differential scenario two
approaches are considered to detect morphed face images,
i.e. an analysis of feature vectors’ differences obtained
from a pair of images as well as a fusion of the resulting
score with that obtained in the no-reference scenario.
To the authors’ knowledge this work represents the first
attempt to directly compare the detection performance
of morph detectors in a no-reference and a differential
scenario on a comprehensive database of bona fide and
morphed face images. Hence, this work provides the first
quantitative measure of improvement in terms detection
performance to be expected in a differential scenario (com-
pared to a no-reference scenario) which is highly relevant
to the detection of morphed face images in electronic
travel documents.

This paper is organized as follows: related works are
briefly summarized in Sect. II. Sect. III describes the
different employed detection subsystems and how these
are employed in both scenarios. Experimental results are
reported and discussed in Sect. IV. Finally, conclusions
are drawn in Sect. V.

II. RELATED WORK

Attacks based on morphed biometric samples were first
introduced by Ferrara et al. [6]. Motivated by security
gaps in the issuance process of electronic travel docu-
ments, the authors showed that commercial face recogni-
tion software tools are highly vulnerable to such attacks,

i.e. different instances of images of either subject are
successfully matched against the morphed image. In their
experiments, decision thresholds yielding a FMR of 0.1%
have been used, according to the guidelines provided by
the European Agency for the Management of Operational
Cooperation at the External Borders (FRONTEX) [1]. In a
further study, the authors show that morphed face images
are realistic enough to fool human examiners [7]. Scherhag
et al. [22] reported moderate detection performance for
benchmarking several general purpose texture descriptors
used in conjunction with machine learning techniques to
detect morphed face images. With respect to the above
attack scenario, it is stressed that a detection of morphed
face images becomes even more challenging if images are
printed and scanned. Further, Hildebrandt et al. [9] suggest
to employ generic image forgery detection techniques, in
particular multi-compression anomaly detection, to reli-
ably detect morphed facial images. Kraetzer et al. [14]
evaluate the feasibility of detecting facial morphs with
keypoint descriptors and edge operators. The benefits of
deep neural networks for detecting morphed images has
been recently investigated by Ramachandra et al. [18]
and Seibold et al. [23]. In [19] the differences between
face morphing and face averaging in the vulnerability of
face recognition systems to both types of approaches are
elaborated. The vulnerability of biometric systems relying
on other biometric characteristics, e.g. fingerprint or iris,
has been established, too [5], [20].

Gomez-Barrero et al. [8] proposed the first theoretical
framework for measuring the vulnerability of biometric
systems to attacks. Evaluations are conducted for diverse
biometric systems where expected comparison scores of
attacks based on morphed images or templates are directly
derived from the mated and non-mated distributions of a
face, fingerprint and iris recognition system. The authors
identified key factors which take a major influence on a
system’s vulnerability to such attacks, e.g. the shape of
genuine and impostor score distributions or the FMR the
system is operated at. Since there is no standardised man-
ner to evaluate the vulnerability of biometric systems to
attacks based on morphed images or templates, Scherhag
et al. [21] introduced new metrics for vulnerability report-
ing (see Sect. IV), which strongly relate to the metrics
defined in [11]. In addition, the authors provide recom-
mendations on the assessment of morphing techniques. It
is emphasized that unrealistic assumptions with respect to
the quality of morphed biometric samples might cloud the
picture regarding the performance of detection algorithms.
Eventually, it is important to note that so far there is no
publicly available database of morphed face images and
no publicly available morph detection algorithms.

III. DETECTION SUBSYSTEMS

In the following subsection, we briefly summarize the
employed pre-processing and feature extractors. Subse-
quently, their use in a no-reference and differential morph
detection scenario is outlined.
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Figure 3: Examples for bona fide and morphed face images
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Figure 4: Example for BSIF responses

A. Pre-processing and feature extraction

In the pre-processing stage the face of a subject is
segmented and normalized according to eye coordinates
detected by the dlib landmark detector [13]. Subsequently,
the normalized region is cropped to 320×320 pixels to en-
sure that the morph detection algorithm is only applied to
the facial region. Finally, the cropped face part is converted
to a grayscale image. Fig. 3 depicts pre-processed face
images of two subjects and their corresponding morph.

At feature extraction the pre-processed face image is
optionally divided into 4× 4 cells to retain local informa-
tion. That is, feature extractors are applied separately on
texture cells and the final feature vector is formed as a
concatenation of feature vectors extracted from each cell.
We employ the following four types of feature extraction
methods (up to two algorithms are considered per type):

Texture descriptors: Local Binary Patterns (LBP) [16]
and Binarized Statistical Image Features (BSIF) [12] are
extracted from the cropped face images. For details on
these texture descriptors the reader is referred to [16],
[12]. While LBP simply processes neighbouring pixel
values of each pixel, BSIF utilizes specific filters learned
from a set of images. Obtained feature values are stored
in a corresponding histograms. The use of these well-
established general purpose texture descriptors has shown
to be successful in diverse texture classification problems.
Focusing on morph detection the process of image mor-
phing is expected to cause changes in textual properties
between bona fide and morphed face images. An example
of BSIF applied to the images of Fig. 3 is depicted in Fig.
4. By testing different spatial sampling rates the two best
configurations for LBP and BSIF were determined, thus,
3×3 and 9×9 LBP-patches and same sized BSIF filter sets
extracting 8 bit per pixel for 3×3 and 12 bit per pixel for
9×9 are employed.

Keypoint extractors: Scale Invariant Feature Transform
(SIFT) [17] and Speeded Up Robust Features (SURF) [3]
extract sets of local keypoints. For details on keypoint
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Figure 5: Example for SURF keypoint detection

(a) Subject 1 (b) Morph (c) Subject 2

Figure 6: Example for sharpness features (two dimensions)

detection, the extraction of keypoint descriptors and key-
point matching the reader is referred to [17], [3]. Key-
point extractors are employed, since morphed images are
expected to contain fewer keypoint locations, which are
defined as maxima and minima of the result of difference
of Gaussians function. That is, the amount of detected
keypoints is used as descriptive feature. Fig. 5 shows an
example of SURF keypoints detected in the images of
Fig. 3.

Gradient estimators: Histogram of Gradients (HOG)
and sharpness features are extracted from the normalized
grayscale images. For further details to HOG the reader
is referred to [24]. As a sharpness feature the mean of
the gradient in two dimensions are calculated. The use of
gradient-based methods is motivated by the fact that due to
the morphing process high frequency changes are reduced
and, hence, the steepness of gradients is decreased. An
example of sharpness features extracted from the images
of Fig. 3 is depicted in Fig. 6.

Deep learning-based method: we employ the OpenFace
[2] algorithm in which rescaled images of 96×96 pixels
are fed to the default pre-trained Deep Neural Network
(DNN) to obtain a 128 dimensional face representation.
This algorithm is applied to the pre-processed face image
(no division into texture cells is applied). The use of Deep
Facial Features (DFF) is motivated by recent advances in
face recognition.

B. No-reference vs. differential morph detection

In the training stage feature vectors are extracted for
each algorithm and support vector machines (SVMs) with
Radial Basis Function (RBF) kernels are trained to distin-



Table I: Training and test set used for experimental evaluations
Training set Test set

Gender No. of No. of Trusted live Bona fide Morphed No. of No. of Trusted live Bona fide Morphed
subjects images capture images images subjects images capture images images

Male 49 2,236 98 485 1,653 58 2,210 499∗ 499 1,711
Female 35 1,403 101 561 741 39 1,165 462∗ 462 703

All 84 3,639 199 1,046 2,394 97 3,375 961∗ 961 2,414
∗same images for live capture and bona fide

guish between bona fide and morphed face images using
a disjoint training set. The SVMs of each single algorithm
generate a normalized attack detection score in the range
[0, 1]. For the no-reference morph detection approach, the
elements of feature vectors extracted from a single image
are analysed. For differential morph detection a trusted live
capture from an authentication attempt of the same subject
serves as additional input. This information is utilized by
estimating the vector differences between feature vectors
extracted from processed pairs of images which are used
to train separate SVMs. In the differential scenario a fusion
of attack detection scores produced by both of the above
approaches can be employed. The fusion of both scores is
expected to achieve competitive results since it combines
morph detectors trained on absolute feature values as well
as relative differences between bona fide and morphed face
images.

IV. EXPERIMENTS

In the following subsections, we describe the exper-
imental setup, conduct a vulnerability assessment of a
COTS face recognition system to attacks based on the
generated morphed face images and report and discuss
the detection performance of the proposed system.

A. Experimental setup

Experiments are performed on a subset of the FRGCv2
face database. A total number of 2,206 frontal faces with
neutral expression have been manually chosen and ICAO
compliance has been verified, i.e. the distance between the
eyes of a face has to be at least 90 pixels [10]. Based on
this subset 4,808 morphed faces have been automatically
generated for pairs of subjects of same gender using the
OpenCV library. Further example images of bona fide and
morphed face images are shown in Fig. 7 which illustrates
the high quality of morphed face images being well in the
quality limits set forth by ICAO and ISO/IEC standards.
The division of images into training and test sets which
has been chosen to obtain a balance between bona fide and
morphed images during training is listed in Table I. During
training and testing the trusted live capture subset is used
as additional input for the differential scenario together
with either a morph or a bona fide image. At training
disjoint sets (live captures and bona fide images) and at
testing all pair-wise combinations are used.

B. Face recognition vulnerability assessment

The vulnerability of a COTS face recognition system
to attacks based on the generated morphed face images
is assessed according to the metrics specified in [21],

(a) Subject 1 (b) Morph (c) Subject 2

Figure 7: Examples of bona fide and morphed face images
of subjects of same gender, ethnicity and age group

in particular, in terms of Mated Morph Presentation
Match Rate (MMPMR). This metric is an adaptation
of the general Impostor Attack Presentation Match Rate
(IAPMR) introduced in ISO/IEC 30107-3 [11] which is
defined as the proportion of attack presentations using the
same presentation attack instrument species in which the
target reference is matched. However, in the adaptation
the MMPMR covers the fact that not one target subject
(contained in the morphed reference) is matched - but both
subjects who earlier contributed to the morphed image
are expected to be matched if the morphing attack is
considered to be successful.

When employing the default decision threshold of the
COTS face recognition system a MMPMR of 1 is ob-
tained. This means all face images of subjects contributing
to a morphed face image are successfully matched against
it, hence, the attacks reveal a success chance of 100%.

C. Morph detection performance evaluation

The performance of the detection algorithms is reported
according to metrics defined in ISO/IEC 30107-3 [11]. The
Bona Fide Presentation Classification Error Rate (BPCER)
is defined as the proportion of bona fide presentations
incorrectly classified as presentation attacks in a specific
scenario. The Attack Presentation Classification Error Rate
(APCER) is defined as the proportion of attack pre-



Table II: Performance rates of no-reference and differential morph detection methods
D-EER BPCER-10 BPCER-20

Algorithm No-reference Differential No-reference Differential No-reference Differential
elements differences fusion elements differences fusion elements differences fusion

LBP1,3 5.1% 3.9% 2.6% 1.7% 0.6% 0.3% 5.3% 2.7% 1.3%
LBP4,3 5.2% 3.9% 2.6% 1.7% 0.6% 0.3% 5.5% 2.9% 1.3%
LBP1,9 13.7% 7.3% 8.5% 21.0% 5.2% 6.0% 35.0% 16.0% 16.2%
LBP4,9 11.9% 7.4% 7.8% 15.0% 4.6% 5.2% 30.1% 15.8% 12.0%
BSIF1,3 2.9% 4.4% 2.4% 1.3% 1.7% 1.0% 1.9% 3.8% 1.5%
BSIF4,3 3.5% 4.7% 2.6% 1.1% 2.2% 0.8% 2.3% 4.5% 1.3%
BSIF1,9 16.5% 9.3% 12.5% 22.9% 8.4% 15.1% 33.2% 23.6% 24.5%
BSIF4,9 10.9% 9.8% 9.5% 11.7% 9.3% 8.9% 27.8% 33.7% 24.1%
SIFT1 22.9% 28.8% 18.0% 31.0% 54.0% 28.8% 38.1% 73.6% 38.3%
SIFT4 14.6% 31.8% 16.6% 18.5% 58.5% 22.8% 27.4% 72.7% 34.0%
SURF1 20.0% 18.1% 16.1% 26.1% 39.8% 25.4% 60.1% 66.1% 32.9%
SURF4 19.1% 25.2% 17.9% 27.4% 48.9% 27.7% 41.4% 69.0% 39.6%
Sharp1 26.8% 23.5% 22.6% 44.1% 59.8% 39.4% 54.9% 79.9% 50.0%
Sharp4 17.9% 6.6% 5.8% 24.2% 2.5% 1.5% 39.8% 9.4% 7.7%
HOG1 26.8% 26.6% 21.3% 50.9% 56.7% 31.4% 73.9% 84.9% 42.8%
HOG4 24.3% 24.1% 20.4% 64.8% 66.4% 49.3% 81.3% 83.2% 74.4%
DFF 26.1% 24.2% 21.0% 60.4% 67.7% 49.3% 77.2% 83.8% 74.2%

1 2 5 10 20 40

1

2

5

10

20

40

APCER (in %)

B
P
C
E
R
(i
n
%
)

LBP1,3

BSIF1,3

SIFT4

SURF4

Sharp4

HOG4

DFF

BPCER-20

BPCER-10

(a) No-reference: elements

1 2 5 10 20 40

1

2

5

10

20

40

APCER (in %)

B
P
C
E
R
(i
n
%
)

LBP1,3

BSIF1,3

SIFT1

SURF1

Sharp4

HOG4

DFF

BPCER-20

BPCER-10

(b) Differential: differences

1 2 5 10 20 40

1

2

5

10

20

40

APCER (in %)

B
P
C
E
R
(i
n
%
)

LBP1,3

BSIF1,3

SIFT4

SURF1

Sharp4

HOG4

DFF

BPCER-20

BPCER-10

(c) Differential: fusion

Figure 8: DET-plots of no-reference and differential morph detection methods

sentations using the same presentation attack instrument
species incorrectly classified as bona fide presentations in
a specific scenario. Further, the BPCER-10 and BPCER-
20 represent the operation points yielding an APCER of
10% and 5%, respectively. Additionally, to be comparable
to published works, the Detection Equal Error Rate (D-
EER) will be reported.

Performance rates of all detection methods and different
scenarios are listed in Table II. The corresponding detec-
tion error trade-off (DET) curves are depicted in Fig. 8.
The division into cells is indicated via sub-indices. For the
texture descriptors the patch size is indicated via a second
sub-index, e.g. LBP4,3 corresponds to a division into 4×4
cells and a LBP-patch size of 3× 3 pixels.

Fig. 8 (a) depicts the DET-plots of the best performing
configurations for the no-reference approach. Competitive
detection rates are achieved for texture descriptors where
BSIF1,3 achieves the best performance of D-EER=2.9%.
Moderate detection accuracy is achieved for keypoint
extractors and gradient estimators. Applying the default
net designed for recognition purposes, DFF reveals the
highest D-EER. However, it is expected that application-
specific training will significantly improve deep learning-
based approaches with the potential drawback of data-

overfitting.
Within the differential approach which utilizes only

vector differences the detection performance is improved
to D-EER=3.9% for LBP while most BSIF settings are in-
fluenced negatively. The effect on the keypoint extractors,
gradient estimators and deep features is mostly minor or
negative. The corresponding DET-plot is shown in Fig. 8
(b). However, in the differential scenario where a score
level fusion of both approaches is performed detection
performance is generally improved compared to the no-
reference scenario. Fig. 8 (c) shows the according DET-
plot. The lowest D-EER for BSIF is as low as 2.4%. In
terms of BPCER-10 and BPCER-20 even more significant
performance gains are obtained which is emphasized in
the corresponding DET curves. With respect to the per-
formance requirements defined in [1], i.e. FNMR ≤ 5%
at a FMR of 0.1%, the differential fusion approach reveals
practical detection performance.

V. CONCLUSION AND FUTURE WORK

The integration of biometric information to electronic
travel documents is vital in order to establish a strong
and permanent link between the document and its holder.
However, this link is annulled if a morphed face image is



infiltrated to the biometric system, e.g. during the issuance
process of an electronic travel document. This vulnerabil-
ity in the life-cycle of electronic travel documents, e.g. the
ePassport, calls for robust and reliable morph detection
subsystems to be integrated to identity verification checks
based on electronic travel documents.

Research on attacks based on morphed biometric sam-
ples and prevention of these is still in statu nascendi.
However, at the time of this writing we see an increasing
interest in this topic where ongoing activities of different
research labs focus on the detection of morphed faces
in a no-reference scenario, e.g. [22], [9], [14], [18]. In
contrast to this, the presented work additionally considers
the scenario in which a bona fide face image of the subject
to be verified is available during the morph detection
process. With regard to identity verification checks based
on face verification and electronic travel documents, e.g.
at ABC gates, this differential scenario is of particular
interest. For numerous trained morph detectors based on
different well-established pattern recognition methods it is
shown that within this scenario substantial improvement in
terms of detection performance can be achieved. That is,
the quantitative difference between detection performance
rates obtained in a no-reference and a differential scenario
reported in this work will provide a useful basis for system
engineers implementing face morph detection algorithms
in operational systems.

The creation of a database of printed and scanned
(morphed) face images and a corresponding evaluation of
the presented morph detection methods in different sce-
narios is subject to future work. Further, alternative morph
creation software could be analysed in future studies.
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