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Abstract

ID cards are uniquely linked to one individual via a prin-
ted or electronically provided facial image. Even though
the face is usually treated as universal and distinctive char-
acteristic, twins can weaken this distinctiveness because
of their biological similarity. Also, one might sometimes
falsely recognise an unknown person as a friend – colloqui-
ally named a Doppelgänger. Recently it was demonstrated
that this biological effect of similar data subjects can be
purposefully established between two individuals in order
to improve the vulnerability of the so-called morphing at-
tack. This image manipulation technique creates a melted
facial image which is similar to two or more data subjects.
If embedded into an ID card, the manipulated reference im-
age can be used by all participating individuals and thus
the concept of a unique link is broken. This work elaborates
the rather neglected part of selecting morph pairs based on
a similarity score instead of a simple random assignment. It
discusses the applicability of different possible algorithms.
The finally developed approach considers complex real-
world constraints while being executable in a reasonable
amount of time and producing acceptable large morph sets.
It is shown that this algorithm greatly increases the vulner-
ability of automated face recognition systems. Surprisingly,
it also proves that an effective pre-selection of pairs ques-
tions the need of in-depth optimized morphing algorithms.

1. Introduction
In the initial face morphing scenario of Ferrara et al. [6]

a criminal and an accomplice succeed to deceive human of-
ficers and automated face recognition systems (FRS) with
their magic passport. Such automated systems are for ex-
ample installed at the airport in order to protect the border
and to accelerate the passenger’s passport inspection at the
same time. Basically, a wanted criminal hides his identity
by using someone’s else passport. The International Civil
Aviation Organization (ICAO) defined the facial image to
be used to link a subject to his ID card [11]. If a manip-

(a) Subject A. (b) Morph. (c) Subject B.
Figure 1. Example of two morphed images.

ulated image is embedded in a valid passport, this unique
link is broken. But how is this possible? In compliance with
ISO/IEC 19794-5 [13] and the ICAO specification [12], an
applicant is allowed to bring a self printed version of a
previously taken picture to the passport application office
which is the common process in many countries [6]. One
might argue that a human officer still verifies this image by
comparing it to the applicants visual appearance. This is
where morphing, an image manipulation which combines
the biometric information of two or more inputs within one
image, plays an important role. If applied, a passport image
representing the facial information from both, the criminal
and the accomplice, can be presented to the human officer,
see Fig. 1. If the morph is of sufficient quality, various re-
searchers have shown that the morphed image can match to
different probe images from both subjects in the comparison
done by a human or a machine [23]. Thus, the accomplice
can apply for a passport under his name and the criminal
crosses the border by using this valid passport.

The detection of these manipulated images is an active
area of research with missing acknowledged robust coun-
termeasures due to various challenges [23]. One of them,
the automated generation of large sets of high quality face
morphs, is very important for meaningful statistical ana-
lyses. While manual morphing of one image is very cost-
efficient, today’s researchers are faced with a need of auto-
mated morphing techniques. Amongst others, machine
learning algorithms for morphing attack detection expect



large sets of training and test data sets. Morphing is, how-
ever, not limited to the image manipulation itself. Before
images are morphed, the data subject pairs for the morph-
ing process have to be selected in a preferably realistic way.
Until today, no suitable and directly applicable database of
mated images is publicly available [23]. Instead, today’s
works often simplify this step by randomly selecting part-
ners of the same gender. The attacker’s goal is, however, to
create a reference image with a high similarity score when
being compared to all contributing individuals. This ques-
tions if an attacker would ever choose his accomplice ran-
domly. On the other hand, similarity based selection has
been a little discussed topic, e.g. in [4, 22, 27]. A general
empirical proof of its morph improvement is still missing
and most current approaches are not hardened against un-
realistically biased sets of morph pairs which, in turn, ma-
nipulates the reported detection performances.

The remainder is organized as follows: Sect. 2 provides
an overview of related work. The complexity of a realistic
morph candidate pair selection with acceptable large sets of
morphs is discussed in Sect. 3, followed by the proposal of
a newly developed algorithm. The conducted experiment to
prove the algorithm’s impact on FRS is described in Sect. 4
and a conclusion drawn in Sect. 5.

2. Related Work
Ferrara et al. [6] first discovered the effectiveness of

morphing as passport image manipulation technique. Since
then, different algorithms which morph two or more im-
ages have been evaluated and optimized [18, 23]. Most of
them rely on so-called landmarks, defined points of the hu-
man face like eyes or nose. Generally, one can distinguish
between methods which morph the full image and those that
only consider some areas, e.g., the splicing morphs presen-
ted by Makrushin et al. [17]. To reduce the number of
visible artefacts, this technique only morphs the face and
splices the result into the background of one of the inputs.

Vyas et al. [27] developed a method to find the most suit-
able animal facial image to be morphed with a human facial
image. For each class (human and different animals) the
respective training image pixels are clustered by using k-
means to derive so-called textons, the cluster centres, for
each class. For a given test image, the distances to the tex-
tons are then compared to find the most suitable animal im-
age. Recently, Damer et al. [4] analysed the influence of dif-
ferent accomplice selection approaches on morphing attack
detection. Their proposed selection strategies are based on
the most similar pairs with the same gender, randomly se-
lected pairs with the same gender, and most dissimilar pairs
without gender restriction. Here, similarity is derived by the
euclidean distance of the respective OpenFace representa-
tions. OpenFace is an open-source FRS developed by Amos
et al. [1]. A thorough search yielded that these are the only

works which show an indication that the targeted selection
of pairs for morphing can influence the human and machine
ability to detect morphs. However, they include only hol-
istic approaches which consider features extracted from the
whole image: textons or OpenFace. Thus, it is unknown
which attribute of the human face is the most relevant for
the similarity based pairing process. Scherhag et al. [22]
suppose that the consideration of soft-biometric attributes
like gender or age creates more lookalike morphs.

Similarity based pairing simulates the process of mul-
tiple criminals searching for their lookalike accomplice.
Damer et al. limit the number of partners per subject to
two. Unfortunately, the authors do not report how this lim-
itation is assured. It is assumed that a subject is discarded
from a list of considered accomplices once it has reached
this limit. In contrast, Vyas et al. concentrate their evalu-
ation on the selection of one animal image which fits best
to all other human images. Both approaches might not be
optimal to simulate the criminal-accomplice-pairing: Teli et
al. [26] showed that human faces can be classified according
to their false-acceptance-rate of an FRS, i.e., some subjects
are more often falsely accepted than others when presenting
another’s subject’s passport image. Thus, the proposed pair-
ing simulations could result in a set with a great variance
in terms of similarity between selected pairs and a biased
amount of pairs a respective subject is part of.

It is important that images used for morphing and those
as probe for the vulnerability assessment are different and
members of disjoint sets to avoid any unwanted correla-
tion [22]. Standardized vulnerability metrics against the
morphing attack are currently not available [23]. Mak-
rushin et al. [17, 18] and Scherhag et al. [22] provide dif-
ferent but similar metrics. This work uses a variation of
the mated morph presentation match rate, the ProdAvg-
MMPMR, here abbreviated as MMPMR, as proposed by
Scherhaget al. [22]. Basically, a morphing attack is con-
sidered successful if all contributing subjects can deceive
a human examiner or FRS with the morphed image, i.e.,
all subjects are accepted. In addition, it takes into ac-
count that each subject might have multiple attempts to
pass the border. Thus, the MMPMR lies between 0 and
1 where 1 implies that for all morphed images all probe im-
ages from all contributing subjects are successfully matched
against the respective morph. For its interpretation the
false-non-match-rate FNMR of an FRS is important to be
known: Naturally, the MMPMR can never be higher than
the genuine-match-rateGMR = 1−FNMR as otherwise
morphing would improve the intra-subject acceptance.

3. Morph Candidate Pair Selection
Before morphing, an attacker searches obviously for his

most similar accomplice, a Doppelgänger. Thus, the ana-
lysis of morphs from dissimilar inputs is out of scope. Sim-



ilarity between two images has to be expressed as numerical
value to construct a ranking from all possible pairs. Also,
images can be classified by categorical data, e.g., gender.
All subjects are allowed to provide different facial images.

How can the best partner be found? In real-world, the
attacker could gather images from social media friends or,
as recently done [20], join forces with others to find the
most suitable accomplice. Within the experiment, a set of
pairs P from the set of subjects S is sought such that only
for a minimal number of pairs p = (a ∈ S, b ∈ S) ∈ P
another subject x ∈ S with a 6= b, a 6= x, b 6= x exists
where (a, x) has a smaller distance D than (a, b):

min(|{p : ∃x(D(a, b) > D(a, x))}|). (1)

The distance D of two subjects is derived by comparing
the facial images. This is not a limitation as morphs are cre-
ated from images. If just the top ranked pairs are selected, a
dataset of morphs based on images from few subjects only
might be created [26]. To avoid a subject-biased pairing, the
number of subjects s within P needs to be maximized:

max(|{s : ∃p(s = a ∨ s = b)}|). (2)

With these two constraints a researcher might be tempted
to simply go through the sorted list of similarity scores and
select a partner as long as a given participation limit has
not been reached. This is the approach proposed by Damer
et al. While some subjects might get their most suitable
partner, others have to accept one of their least preferred
ones if no other subject is available anymore. Thus, also a
minimized average distance is sought:

min( 1
|P | ·

∑P
p=1(D(ap, bp))). (3)

The following solution is inspired by the commonly
known marriage problem [9] where pairs of males and fe-
males are sought such that no subject wants to change his
partner. In the field of theoretical computer science different
terms are used, which are sometimes opposite to the defin-
ition of the Harmonized Biometric Vocabulary [14]. Espe-
cially the term matching in graph theory refers to a subset
of pairs where no participant is part of two pairs [3].

3.1. Data Preparation

In case multiple sets of subjects are needed, for example
for training and testing of a morphing attack detector, the se-
lection algorithm has to be executed on each set separately.
In contrast to Damer et al., it is recommended to split the
subjects before partners are selected. Otherwise a matching
like (a, b), (b, c), (c, d), and (d, a) cannot be split into two
disjoint sets with no subjects being part of multiple sets.

Only one image per subject is considered to reduce the
algorithm’s complexity. For each subject the image with the
smallest average distance to the images of all other subjects

Algorithm 1: Proposed Pairing Algorithm
Data: Subjects S with their respective facial images
Result: Pairs P with two images per pair
subject sets = SplitSubjects(S);
forall subject set in subject sets do

forall subject in subject set do
images += GetBestImage(subject);

end
categories = DeriveCategories(images);
forall category in categories do

images = GetImagesOfCategory(category);
ranking = GetRanking(images);
// Minimum Weight Matching
cost matrix = GetCostMatrix(ranking);
P += HungarianAlgorithm(cost matrix);

end
end
P = DeleteForbiddedPairs(P);

is selected. The number of subjects within a face database
of ICAO compliant images is often very small. Reducing
this number weakens training and test results of machine
learning algorithms. Also, limiting the number of accom-
plices could lead to very small groups. The reported results
would then be influenced by the group’s size. Thus, pos-
sible accomplices for each attacker are all other subjects or
subjects of the same category: If enough subjects are avail-
able, the division by gender or ethnicity is more realistic
than arbitrary splits.

Algorithm 1 depicts all conducted steps. For the cre-
ation of the ranking a distance function, e.g., based on age,
is used. Then, the minimum weight matching returns a set
of pairs in compliance with the specified optimisation func-
tions. Each subject is part of at most two pairs. This enables
the creation of a bipartite graph. In such a graph the ver-
texes can be split into two disjoint sets with all edges con-
necting two vertexes of different sets [3]. This simplifies the
pairing in terms of complexity and efficiency. Further, the
dataset is not reduced as the final number of pairs is equal
to the number of provided data subjects.

3.2. Minimum Weight Matching

A common example for this basic mathematical problem
is the assignment of jobs to workers where each worker has
a different cost for the respective job. To apply this idea to
the morph candidate pair selection, the ranking is converted
into a cost matrix, see Fig. 2a. By going through the rank-
ing, the distance scores are successively inserted into the
matrix where row and column are selected by the respect-
ive image’s ID. If an unknown ID is found, a new row and
column is appended to the matrix.



img1 img2 img3 img4

img1 - 2 4 17

img2 2 - 2 19

img3 4 2 - 21

img4 17 19 21 -

(a)

img1 img2 img3 img4

img1 42 2 4 17

img2 42 42 2 19

img3 42 42 42 21

img4 42 42 42 42

(b)
Figure 2. Exemplary cost matrix (a) and the respective matrix with
blocked elements in grey as well as the encircled selected pairs (b).

Next, the probability for some combinations needs to be
reduced. Images shall not be assigned to itself. Also, the
calculated distances are independent of the pair’s image or-
der while the exact order might influence the later morphing
process, e.g., for splicing morphs. The optimal order can,
however, differ among morph algorithms. Thus, a pair shall
not be present in both orders. To reduce the probability of
both kind of pairs in the final result, the main diagonal as
well as all entries below are filled with a score equal to two
times the maximum score as shown in Fig. 2b. In case one
of these combinations is nonetheless present, it is deleted.

To find the matching with the lowest average score, the
Hungarian Algorithm by Kuhn [16] is performed on the cost
matrix. It returns a matching where each row and column
is selected exactly one time while minimizing the average
cost. It is polynomial in computation time by the matrix’s
size. The maximum number of pairs is equal to the number
of images and as such the number of subjects. In Fig. 2b an
average score of 10.5 is reached (the 42 is replaced by its
actual value 17) and no pair deleted.

3.3. Random Pair Matching

To compare the previous algorithm to a random selec-
tion, the same prerequisites are necessary to avoid any influ-
ence on the reported results. First, one image per subject is
randomly selected. Each image is added to a list of available
partners. Secondly, the images are paired randomly by en-
suring that each image participates in exactly two pairs and
that each pairing consists of two different images. There-
fore, an image is deleted from the list of available partners
once selected. In case the last image imgN can only be
paired with itself, the algorithm selects an already created
pair (other1, other2), removes this pair, and creates two
new pairs (other1, imgN) and (imgN, other2).

4. Experiment
The experiment assesses the influence of pairing

strategies on the vulnerability of automated FRS. For some
steps a commercial off-the-shelf software (COTS) is used.

4.1. Experimental Setup

6,945 ICAO compliant images from 563 subjects of the
FRGCv2 database [19] serve as input. Only subjects with
at least two images are considered. The ICAO compliance
is manually verified according to ISO 19794-5 [13]. To sat-
isfy the geometric ranges, the minimum inter eye distance
of 90 pixels is verified and the face rotated to align the eyes
on a horizontal line. Finally, the images are cropped to
centre the face while obtaining the required ratios of im-
age width/height and head width/length. Missing pixels are
inserted by repeating the pixels of the outer border. The
images are not scaled to preserve the maximum quality.

Scherhag et al. [22] recommend the use of soft-biometric
attributes as indication of similarity. Many morphing
algorithms rely on the so-called Delaunay triangulation
between averaged landmarks [23]. It is expected that smal-
ler distances between landmarks of both input images result
in better morphs. Due to the large number of images all data
are derived automatically (except gender). Their general
plausibility is manually verified. However, it is important
that the final vulnerability influence is based on the tool’s
choice and not necessarily on the data type.

Age: COTS returns the age for an image. The absolute
value of the age difference indicates the similarity. COTS’
age calculation is independent of the provided FRS which
can therefore still be used for the vulnerability assessment.

Shape of Hair: MobileUNet [25] returns a mask which
values indicate the probability that a certain pixel repres-
ents human hair. The mask is binarized and the similarity
between two masks derived by their hamming distance.

Skin colour: The RGB values of the nose’s bridge
without the tip are averaged. This area is found to be the
only one which is never covered by human hair nor glasses
and not biased by shadows, reflections or over-exposure. It
is reliably detectable by dlib-ml [15]. The euclidean dis-
tance of two average RGB values represents their similarity.

Landmarks: dlib-ml [15] derives 68 special points of the
human face. During comparison, both images are rescaled
to a fixed size and the euclidean distance of each respective
point calculated. Their median serves as similarity score.

OpenFace: Damer et al. [4] already showed that a
preselection based on the euclidean distance of two repres-
entation matrices produced by OpenFace has an impact on
the acceptance rate of a morphed image. This score is, in
contrast to the other data, produced by the analysis of the
whole face instead of hand-crafted features. By this de-
cision OpenFace’s vulnerability against morphs cannot be
assessed: A usage of the same information during the pair
selection, done by the attacker, and the verification, done by
the defender, produces unrealistic results.

Gender: FRGCv2 provides the gender with two categor-
ies (male and female). Similarity is defined as the fact that
two images belong to the same category.



(a) Age. (b) Shape of Hair. (c) Skin color. (d) Landmarks. (e) Gender.
Figure 3. Attribute distributions of the selected input images. A sufficiently large inter-subject variance is observed for all data.

All considered data are found to have a sufficient inter-
subject variance, see Fig. 3. The OpenFace representation
matrix is not shown due to its complexity. By the nature
of this FRS the inter-subject matrices differ a lot while
the intra-subject ones are as similar as possible. The vari-
ance is important as otherwise no difference between selec-
tion strategies would be observable. The minimum weight
matching is performed for each numerical data type. One
additional set of pairs is returned by a random matching.
Both are repeated under the consideration of the assigned
gender. The distance scores of the targeted selections are
compared to the respective random selection and found to
be considerably smaller. Thus, the proposed method pro-
duces more similar pairs than a random selection.

The applied morphing tools are selected because of their
availability, the possibility of automation and their used
techniques. Based on these criteria the OpenCV library [2]
and GIMP-GAP [10] are chosen. These libraries are not
especially created for morphing attacks but easily avail-
able for attackers. In addition, Face Morpher by Alyssa
Quek [21] is selected as it provides an easy to use inter-
face to quickly generate morphs without the need of pro-
gramming skills as required for the other two tools. UBO-
Morpher is applied in various publications of Ferrara et al.
from the University of Bologna (UBO) [7]. It is designed
to create morphs optimized for the morphing attack detec-
tion analysis. While this tool is not publicly available it
shows what a more advanced attacker could produce to cre-
ate better looking morphs. All morphing algorithms receive
landmarks extracted by dlib-ml [15].

During a manual inspection of the produced morphs no
visual difference due to the pairing algorithm could be ob-
served. All kinds of visual artefacts are mostly influenced
by the respective morph tool.

4.2. Face Recognition Vulnerability Assessment

The influence of pair selection strategies is evaluated on
two pre-trained FRS: ArcFace [5] and the mentioned COTS,
see Tab. 1. Both systems’ thresholds are set up according
to FRONTEX’ requirement of a false-match-rate equal to
or below 0.1% [8] by randomly selecting 6384 impostor

and 6306 genuine attempts from the ICAO compliant image
subset of FRGCv2. The GMR and therefore the maximum
MMPMR is 99.87% for both FRS.

ArcFace: The MMPMR of all morph candidate sets
and different morph tools resides between 61.82% and
98.26%. Thus, all sets and tools are applicable to per-
form a morphing attack on ArcFace with a high attack
success rate. The morph tools OpenCV and GIMP-GAP
which morph the whole image achieve always a higher
MMPMR than UBO-Morpher and Face Morpher on the
same set of morph candidate pairs. The latter tools use the
splicing morph technique with the background of the first
subject (UBO-Morpher) or an averaged background (Face
Morpher). These morphs are thereby more similar to the
first subject or have a blurred background which, as the ex-
periment shows, affects the success rate. Almost all sets
which are selected by the minimum weight matching have
an about 0.64 to 28.87 percent points (pp) higher MMPMR
than the respective random selection. Only one set performs
0.14 pp worse which can be neglected due to the small dif-
ference. With 98.26% the Gender-OpenFace set morphed
with GIMP-GAP reaches almost the maximum possible
MMPMR. For the given similarity score types and morph-
ing algorithms it can be generally stated that OpenFace per-
forms the best. For the categorical selection, gender per-
forms slightly better than no category. However, this rank-
ing has to be confirmed in future work: By using only one
algorithm per similarity score type it cannot be stated if this
is due to the algorithm’s properties or the type. The presen-
ted pair selection algorithm increases the average MMPMR
of all morph tools (95.74%) by up to 18.92 pp compared
to the respective random selection (76.82%) and decreases
the standard deviation between these tools. The worst per-
forming tool, UBO-Morpher, benefits the most of the simil-
arity based pairing. In Fig. 4a exemplary score distributions
of ArcFace are depicted. Following the Doppelgänger ap-
proach it shows a clear shift of the preselected morph scores
towards the genuine scores compared to the random selec-
tion. The same effect is observed for the other morph tools,
similarity scores and categories. This emphasizes the con-
clusions drawn above. Despite those good results, a clear



ArcFace COTS
CV GAP UBO FM ø σ CV GAP UBO FM ø σ

N
o

ca
te

go
ry

Random 83,72% 83,21% 61,82% 78,55% 76,82% 10,27% 96,78% 96,54% 70,64% 94,08% 89,51% 12,64%
Age 86,86% 87,01% 69,22% 81,96% 81,26% 8,37% 96,56% 96,07% 76,45% 94,02% 90,78% 9,61%
Landmark 90,23% 90,10% 72,99% 85,68% 84,75% 8,12% 97,70% 97,68% 76,88% 95,94% 92,05% 10,15%
Shape of Hair 87,19% 86,51% 66,44% 79,83% 79,99% 9,63% 97,37% 97,16% 75,98% 94,54% 91,26% 10,27%
Skin colour 87,15% 86,17% 67,79% 82,65% 80,94% 8,98% 96,64% 96,38% 72,43% 93,57% 89,75% 11,63%
OpenFace 97,92% 97,92% 90,69% 96,43% 95,74% 3,44% 99,38% 99,30% 87,92% 98,20% 96,20% 5,55%

G
en

de
r

Random 89,29% 88,11% 69,36% 82,82% 82,40% 9,14% 97,62% 96,90% 74,87% 95,30% 91,17% 10,91%
Age 89,15% 88,75% 72,18% 84,25% 83,58% 7,92% 97,31% 97,05% 79,81% 94,60% 92,19% 8,34%
Landmark 92,54% 92,61% 77,72% 90,13% 88,25% 7,11% 97,84% 97,71% 82,16% 96,68% 93,60% 7,64%
Shape of Hair 91,92% 91,10% 72,72% 85,38% 85,28% 8,87% 97,88% 97,65% 81,39% 96,42% 93,33% 7,99%
Skin colour 92,43% 91,93% 74,54% 88,56% 86,86% 8,39% 98,39% 98,21% 81,50% 96,52% 93,66% 8,15%
OpenFace 97,96% 98,26% 91,80% 96,37% 96,10% 2,98% 98,99% 98,82% 89,99% 98,49% 96,57% 4,39%

Table 1. MMPMR of the attacked FRS with the morphs created by OpenCV (CV), GIMP-GAP (GAP), UBO-Morpher (UBO) and Face
Morpher (FM) separated by used similarity score types and categorization criteria for the morph candidate pair selection process. The
average MMPMR (ø) and standard deviation (σ) is calculated per set of pairs. Greatest and smallest values are marked in bold per area of
interest. A significant influence of similarity based pairing compared to the respective random baseline is observed.

(a) ArcFace distance scores. (b) COTS similarity scores.
Figure 4. Probability density functions for impostor (blue), morph
(grey and green), and genuine scores (orange). Similarity based
selections are greyed compared to the random selection in green.
Morphs are created by UBO-Morpher with no category class.

separation of impostor, morph, and genuine scores is vis-
ible even for the similarity based pairing. It confirms the
recent findings of Scherhag et al. [24] for morphing attack
detection using face representations.

COTS: Compared to the results produced by ArcFace, an
even higher average MMPMR for all sets is observed. Mul-
tiple sets reach almost the maximum possible MMPMR. An
FRS not only has to consider security aspects but also the
overall throughput (low FNMR). Thus, a good performing
real-world FRS does not only detect all impostors but gen-
eralizes also different images of the same subject to be ro-
bust against the natural intra-subject variance. These are
indeed conflicting requirements and can result, as shown
here, in an higher morph vulnerability if the generalization
performs too well. A greater risk due to targeted selection is
still observed: If the pairs are selected by OpenFace scores,
the average MMPMR increases by 6.69 pp. Only some
targeted selections reduce the MMPMR by up to 0.51 pp
(e.g., using skin colour and Face Morpher) which is there-

fore negligible. The actual score distributions prove this
observation as well, see Fig. 4b. A general shift of morph
scores towards genuine scores is clearly visible for simil-
arity based pairing. It also shows that the MMPMR can-
not be greatly improved as, compared to the observations
on ArcFace, the morph scores are already very close to the
genuine scores. A threshold closer to the peak of the morph
scores could greatly decrease the MMPMR but might also
increase the FNMR. So, an adjustment of COTS, to be more
robust against morphs, is not as easy as for ArcFace.

All in all, both FRS are more vulnerable if the morph
pairs are selected based on their similarity. Simple similar-
ity indications as gender or skin colour are already effective.
However, a holistic approach conducted with OpenFace has
the overall highest impact. Further, more similar pairs min-
imize the standard deviation of the morph tools.

5. Conclusion and Future Work

To the authors’ knowledge this work presents the first in-
depth analysis on the impact of similarity based pair selec-
tion. By considering real-world constraints a new method is
developed to efficiently select similar pairs. It is then com-
pared to an adapted version of a random selection process
which is often found in state-of-the-art morphing attack re-
search. The conducted experiment proves that appropriate
pair selection not only increases the morph quality (in terms
of FRS vulnerability) but also substantially decreases the
standard deviation between different morphing techniques.
In other words, an effective preselection reduces the need
for a perfect, low-artefact producing, morphing algorithm.
This is very important as automated morphing is still error-
prone with the difficulty to fully remove all artefacts. In



a nutshell, automated face recognition systems that operate
on the purpose of determining the similarity between two
facial images are not only vulnerable to morphed faces but
can also contribute to a morphing attack by finding optimal
pairs of data subjects in a sufficient manner. If these find-
ings can be transferred to a manual inspection, e.g., done by
a border officer, is still an open research question.

In future work, the pairing algorithm is expected to
be further optimized. Especially a random blocking of
two pairs (img1, img2) and (img2, img1) instead of al-
ways blocking the second pair is expected to better utilize
the Hungarian Algorithm’s capabilities. Other holistic ap-
proaches to calculate the similarity of two images might be
of interest as well. This leads to the final question: Can the
vulnerability of a face recognition system be predicted by
the average similarity score of the selected pairs?
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