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Abstract

Finger vein recognition has emerged as an accurate and

reliable biometric modality that was deployed in various se-

curity applications. However, the use of finger vein recogni-

tion also indicated its vulnerability to presentation attacks

(or direct attacks). In this work, we present a novel algo-

rithm to identify the liveness of the finger vein characteristic

that is presented to the sensor. The core idea of the proposed

approach is to magnify the blood flow through the finger

vein to measure its liveness. To this extent, we employ the

Eulerian Video Magnification (EVM) approach to enhance

the motion of the blood in the recorded finger vein video.

Next, we further process the magnified video to extract the

motion-based features using optical flow to identify the fin-

ger vein artefacts. Extensive experiments are carried out

on a relatively large database that is comprised of normal

presentations vein videos from 300 unique finger instances

corresponding to 100 subjects. The finger vein artefact

database is captured by printing 300 real (or normal) pre-

sentation image of the finger vein sample on a high-quality

paper using two different kinds of printers namely laser and

inkjet. Extensive comparative evaluation with four different

well-established state-of-the-art schemes demonstrated the

efficacy of the proposed scheme.

1. Introduction

Biometric systems are widely used in various applica-

tions that demand reliable user identity authentication based

on either physical and/or behaviour characteristics. Even

though biometric systems are known for their reliable bio-

metric performance, at the same time they have also demon-

strated a vulnerability to various kinds of attacks. The at-

tacks on biometric systems can be broadly classified into
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Figure 1: Illustration of finger vein artefact (a) Real Image

(b) Artefact (print)

two types namely: (1) Direct Attacks (2) Indirect Attacks.

The direct attack is also called presentation attack and

merely involves in presenting a biometric artefact to the

sensor to gain access. The indirect attack involves in at-

tacking the different working components of the biometric

system and hence demands the need for understanding the

process flow of biometric systems. When comparing these

two kinds of attacks, the direct attack or presentation attack

appears not only feasible but also more cost effective for the

attacker to fool a biometric system.

Most of the biometrics modalities have demonstrated the

vulnerability for presentation attacks [2][9]. Among the

various biometric modalities, the finger vein biometrics is

gaining more popularity because of its robustness and accu-

racy. Furthermore, the finger vein biometric is considered

as a trustworthy modality since the vein pattern is present

inside the skin and thus no latent prints are left uninten-

tionally. Further, the characteristic is not visible to naked

eyes and hence not easy to capture in a non-intrusive man-

ner unlike other biometric modalities such as the face, iris

or fingerprint. Also, the finger vein biometric is considered

to be more stable since the persons finger vein pattern re-

main relatively stable during his/her lifetime [1] although

no definitive scientific studies exist.

Recently, the vulnerability of finger vein biometric sys-

tems has been investigated in [11] for presentation attacks

using a print artefact. The finger vein print artefacts are

generated by printing the finger vein image using a con-

ventional printer. In the next step, this is further enhanced

in terms of contours using a black ink white board marker.

This artefact is then presented to the finger vein sensor to



capture the artefact samples. Extensive analysis is pre-

sented using a finger vein artefact database comprised of

50 subjects indicated the vulnerability of the finger vein

biometrics with a Spoof False Acceptance Rate (SFAR)

of 86%. More recently, the 1st Competition on Counter

Measures to Finger Vein Spoofing Attacks was organised

in conjunction with the International Conference of Bio-

metrics 2015. Figure 1 illustrates the finger vein artefact

sample from the Spoofing-Attack finger vein database [10]

used in this competition. Early results available from this

competition introduced three different Presentation Attack

Detection (PAD) algorithms using (1) Binarized Statistical

Image Features (BSIF), (2) Riesz transform and (3) Local

Phase Quantization (LPQ) [14] and Weber Local Descrip-

tor (WLD). All these schemes have used Support Vector

Machine (SVM) as a classifier. The best result is noted

for the third scheme based on the combination of Local

Phase Quantization (LPQ) [14] and Weber Local Descrip-

tor (WLD) as a feature extraction and SVM as a classifier.

Since all the available PAD techniques are constructed on a

learning based schemes, they may have difficulties to gen-

eralise. Furthermore, the use of texture based features are

highly sensitive to noise and thus less robust on unseen at-

tacks.

Hence, this paper presents a liveness measure based on

the motion magnification for finger vein PAD. To the best

of our knowledge, there is no similar prior work for use as

a finger vein liveness measure. For this purpose, we devel-

oped a new finger vein video artefact database comprised of

100 subjects whose videos are recorded in two different ses-

sions. We generate two different artefacts by printing a real

finger vein image using inkjet and laser printer. We then

propose a novel scheme based on Eulerian Video Magnifi-

cation (EVM) [12] to magnify the motion of the blood in

the finger vein. We then compute the optical flow between

the first and the last frame in the EVM video to compute

the motion magnitude that in turn is compared against the

pre-set threshold to make the decision on whether the pre-

sented video is an artefact or a normal presentation. Exten-

sive experiments are presented that include the vulnerabil-

ity assessment as well as the comparative evaluation of the

proposed liveness measure with four well-established finger

vein PAD algorithms. Experimental results demonstrated

the efficacy of the proposed finger vein PAD algorithm with

the lowest classification error rate of 2.20% on inkjet print

artefact and 3.60% on laser jet print artefact.

The rest of the paper is structured as follows: Section 2

presents the finger vein artefact data collection, Section 3

presents the proposed scheme, Section 4 presents the exper-

imental results and discussion. Finally, Section 5 draws the

conclusion of this work.

(a) (b) (c)

Figure 2: Example of the finger vein artefact (a) Back view

(b) Side view (c) Top view

2. Finger vein artefact data collection

We collect a new large scale finger vein artefact database

in which artefacts are generated using two different kinds

of printers such as inkjet and laser printer. Our database is

comprised of 100 subjects for which we capture the finger

vein from four different fingers namely right index, right

middle, left index and left the middle. However, some of

the subjects were not able to provide all four fingers due to

the various reasons. Thus, the collected database has 600

samples from 2 session of 300 unique finger vein instances

that correspond to 100 subjects. All samples are collected in

our laboratory using our Gjøvik University College (GUC)

finger vein sensor [8]. The finger vein sensor used in this

work captures the finger vein image by penetrating the near

infrared light through the finger. Thus, the subject will po-

sition the finger inside the sensor, the LED light is illumi-

nating the dorsal part of the finger so that it will penetrate

through the finger and the ventral vein pattern is captured

by the camera located on the opposite side.

2.1. Real sample capture

The real sample database is collected by asking the user

to place the finger on the sensor. We capture the video for

the duration of 1.67 seconds at a rate of 15 frames per sec-

ond that will result in 25 frames for each video capture. The

data capture process is carried out in two different sessions

to have two independent video captures for every subject.

Thus, we have a total of 600 videos with 600 ∗ 25 = 15000
frames corresponding to a real finger vein.

2.2. Finger vein artefact generation

In this work, we generated the artefacts by printing the

real sample using different kinds of printers such as inkjet

and laser. The motivation for using the print attack is be-

cause it is very easy to generate, cost effective and already

proven to be efficient in a previous study [10]. In order to

generate the finger vein artefacts using inkjet printer, we

first perform the pre-processing on each of the captured

frames of the video by extracting the Region of Extract

(ROI) and then rescaling the ROI finger vein to have a di-

mension of 100×300 pixels. We then carry out the contrast

enhancement using histogram equalisation to improve the

contrast of the real image before printing using high-quality
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Figure 3: Illustration of Finger vein presentation attack (a)

working vein sensor with LED glowing (b) Attack on the

sensor with finger vein artefact and external light

glossy paper with 300 gr. A similar procedure is also fol-

lowed to generate the laser print artefact, which also uses

high-quality paper with 200gr on which a real finger vein

sample is printed using a laser printer.

After we generated the artefact, we present it to the fin-

ger vein sensor as presentation attack instrument. Our main

idea is to present this artefact to the sensor such that it will

block the LED illumination and then we use the external

visible light source to illuminate the artefact so that the

attack instrument is successfully captured by the camera.

However, in a real scenario the finger vein sensor uses the

LED illumination to illuminate the finger through sideways

or back penetration for a normal image capture. Thus, we

designed the final artefact to block both sides and any back

illumination. To this extent, we have used a thick plastic

base on which the print finger vein artefact is placed and

presented to the sensor. Figure 2 shows the final artefact

used to attack our GUC finger vein sensor. Figure 3 shows

the presentation attack on the vein sensor using the artefact

showed in the Figure 2.

Figure 4 shows both real (normal) finger vein images and

artefact finger vein images (one frame from the video) cap-

tures using our GUC finger vein sensor. Here one can ob-

serve the good quality of a finger vein artefact image col-

lected by following our outlined procedure.

3. Proposed scheme

Figure 5 shows the block diagram of the proposed fin-

ger vein PAD scheme that can be structured in two main

components namely: The PAD module and the finger

vein verification module. Given the finger vein video

Fv = {Fv1, Fv2, . . . , Fvn}, where n indicates the number

of frames. We then process each frame Fvn to extract the

Real Artefact - Inkjet Artefact - Laserjet

(a) (b) (c)

Figure 4: Comparison between real and artefact capture (a) Real Image (b) Inkjet print artefact (c) Laser print artefact
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Figure 5: Block diagram of the proposed finger vein PAD scheme
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Figure 6: Qualitative illustration of the EVM motion magnification on real, inkjet print and laser print finger vein video

Region Of Interest (ROI). Since the GUC sensor has dedi-

cated space to place the finger, the ROI extraction is carried

out by setting a pre-assigned rectangular area to cover the

region of interest for the finger. The obtained ROI finger

vein image Frvn is further re-sized to have a dimension of

100× 300 pixels before passing it to the PAD module.

3.1. PAD module

The core idea of the proposed finger vein PAD module is

to explore the motion of blood that flows through the finger

vein Fv . To this extent, we employ the Eulerian Video Mag-

nification (EVM) [12] that can amplify the inherent motion.

The EVM algorithm is based on processing both temporal

and spatial filtered information that can localise and mag-

nify the inherent motion using Taylor expansion assump-

tion. For each ROI frame Frvn, the first step involves in de-

composing the ROI frame Frv1 into spatial Laplacian bands

which are then processed using an ideal temporal bandpass

filter to isolate the desired temporal motion in each band.

Finally, the isolated bandpass signal is then multiplied by

an amplification factor α and added to the original signal.

The motion magnification is depended on both filter and the

value of the magnification factor α. In this work, we choose

the α value as 250 based on the visual inspection of the pro-

cessed finger vein frames from the training set. The value

of α is kept constant throughout our experiment. Thus, the

enhanced motion will provide a significant information on

the liveness of the finger vein by magnifying the motion of

the blood that flow through the finger vein. Let the EVM

processed video corresponding to the input video Fv be de-

noted as FE = {FE1, FE2, . . . , FEn}.

Figure 6 shows the quantitative results of the motion

magnification obtained using EVM algorithm on both real

and artefact finger vein video at four different instances

starting from Frame 1, Frame 9, Frame 18 and Frame 25.

It is quite interesting to observe from Figure 6 that, the use

of EVM on the real finger vein video shows a significant

magnification of the blood flow by emphasizing the finger

vein parts in the frames. Furthermore, the magnification

of the blood flow increases with time as we can observe a

most significant motion enhancement in the Frame 25 when

compared to that of Frame 1. However, it is also interesting

to observe at the same selected frames almost zero motion

magnification in the case of the artefact finger vein videos.

These qualitative results demonstrate the applicability of the

EVM method for the finger vein liveness detection.
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Figure 7: Qualitative results of motion features on real

finger vein sample illustrated on two different finger vein

videos (a) First frame (b) Last EVM frame (c) Motion com-

puted using optical flow
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Figure 8: Qualitative results of motion features on inkjet

print artefact finger vein sample illustrated on two different

finger vein videos (a) First frame (b) Last EVM frame (c)

Motion computed using optical flow

In the next step, we further process the motion magnifi-

cation finger vein video Fv to classify each presented video

as either real or artefact by extracting the motion-based fea-

tures. We employ optical flow [4] to extract the motion-

based features. The optical flow will compute the motion

of each pixel by solving the optimisation problem. In this

work, the successive over-relaxation (SOR) [4] is used to

solve the optimisation problem due to its low computational
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Figure 9: Qualitative results of motion features on laser

print artefact finger vein sample illustrated on two differ-

ent finger vein videos (a) First frame (b) Last EVM frame

(c) Motion computed using optical flow

complexity. However, computing the optical flow for every

frame of FE is highly computational. Thus, we propose to

compute the optical flow between the first and last frame of

FE . Since the use of EVM requires a first couple of frames

to enhance the motion, the use of the first frame FE1 rep-

resents the normal frame where the last frame FE25 repre-

sents the motion enhanced frame. Thus, it is our assertion

that the optical flow computation between these two frames

will provide a significant information about the motion of

blood that can form the evidence of liveness of a captured

finger vein characteristic. Figure 7 illustrates the qualita-

tive results of the optical flow between FE1 and FE25 on

real finger vein video where Figure 8 and 9 shows the qual-

itative results on inkjet print and laser print artefact finger

vein video. Thus, one can observe the significant change in

the motion magnitude (Figure 7 (c)) of the real presentation

when compared with the artefact presentation (and Figure 8

(c) and 9 (c)). Finally, we obtain the final decision by sim-

ply comparing the motion magnitude to the preset threshold.

Thus, first we derive from the optical flow:

[Mx,My] = OF (FE1, FE25) (1)

Where, OF indicates the optical flow operation on the first

frame FE1 and the last frame FE25, Mx indicates the flow

in horizontal direction and My indicates the flow in vertical

direction.

MotionMag =
∑

j

∑

k

(

√

[(Mx)2 + (My)2]
)

(2)

Where, MotionMag indicates the quantitative value of the

motion magnitude, j indicates the number of rows and k

indicates the number of columns.

De =

{

Real, if, MotionMag ≥ Th,

Attack, otherwise
(3)

Where, De indicates the final decision and Th is the pre-

determined threshold value on the training set.

3.2. Finger vein verification

The finger vein verification system (or baseline system)

employed in this work is based on the Maximum Curvature

Points (MCP) [5] as a feature extraction and correlation as

a comparator. This choice is made by considering the high

performance and fewer computation characteristics exhib-

ited by the MCP features [6].

4. Experiments and Results

This section describes the experimental protocols and the

experimental results obtained by comparing the proposed

scheme with four different state-of-the-art finger vein pre-

sentation attack detection algorithms.

4.1. Evaluation protocols

For the experiments, each finger is considered as a

unique finger instance that will result in 300 unique sam-

ples. For each unique instance, we have collected two
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Figure 10: Score distribution with inkjet print artefact
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videos in two separate sessions. We then divided the whole

database into two independent subsets namely: training and

testing set. The training set is comprised of first 50 unique

instances and the testing set is comprised of remaining 250

instances. The training set is used for multiple purposes in

this work that includes (1) To set the threshold value based

on the Equal Error Rate (EER%) for vulnerability analy-

sis (2) Used to set the Threshold value Th (see Equation 3)

with the proposed PAD scheme (3) used as the training set

to evaluate the state-of-the-art finger vein PAD algorithms.

The testing set is solely used to evaluate the performance

of the proposed as well as state-of-the-art finger vein PAD

schemes.

4.2. Results and discussion

We first present the vulnerability study on our GUC fin-

ger vein sensor [7] to 2 different kinds of finger vein print

artefacts. The main goal of this vulnerability study is to

obtain the Spoof False Acceptance Rate (SFAR%) that in-

dicates the applicability of the artefact samples collected in

this work to spoof the sensor. To this extent, we consider

the baseline finger vein recognition system that operates in

two modes namely: normal mode and attack mode to obtain

the comparison scores. In the normal mode, we have used

one frame of a real video from the first session as the refer-

ence and we have used all 25 frames of a real video from the

second session as the probe. This will generate 25× 250 =
6250 genuine scores and 250× 249× 25 = 1556250 zero-

effort impostor scores. For the attack mode, we have used

one frame of a real video (same image that we have used

with normal mode) while the probe sample corresponds to

the finger vein artefact video that is comprised of 25 frames.

Thus, here also we have 25 × 250 = 6250 genuine scores

and 250× 249× 25 = 1556250 impostor scores.

Figure 10 shows the score distribution obtained on both

normal and inkjet print artefact obtained using the base-

line finger vein system. The black vertical line in Figure

10 and 11 indicates the threshold value obtained on the

training dataset that corresponds to the EER value of the

baseline finger vein system operating in the normal mode

(i.e. with real presentation). As observed from the Fig-

ure 10, the inkjet print artefact scores lie between impos-

tor and genuine scores of the real presentation and shows

an SFAR of 90.62%. A similar observation can also be

noted for the laser print finger vein artefact where the cor-

responding score distribution is shown in Figure 11. Here

also it can be observed that spoof scores show significant

overlapping with genuine and imposter scores obtained us-

ing real presentation and thereby indicating an SFAR of

91.87%. The obtained SFAR shows the vulnerability of the

finger vein sensor to the artefacts generated in this work and

thereby motivates the need for presentation attack detection

(or countermeasure) techniques to mitigate these attacks.

In the following, we present and discuss the results

obtained on the proposed PAD scheme on the finger vein

verification system. The quantitative performance of the

presentation attack detection algorithms are presented

according to the ISO/IEC CD 30107-3 [3] in terms of: (1)

Attack Presentation Classification Error Rate (APCER),

which is defined as a proportion of attack presentation

incorrectly classified as normal (or real) presentation (2)

Normal Presentation Classification Error Rate (NPCER)

which is defined as proportion of normal presentation

incorrectly classified as attack presentation. Finally, the

performance of the overall PAD algorithm is presented in

terms of Average Classification Error Rate (ACER) such

that,

ACER =
(APCER+NPCER)

2
(4)

The lower the values of ACER, the better is the PAD per-

formance.

Table 1: Performance of the proposed scheme on inkjet

print artefact. (∗ reimplemented in Matlab)

Method APCER (%) NPCER (%) ACER (%)

Riesz transform-SVM∗ [10] 9.20 84.40 46.8

LPQ+WLD-SVM ∗ [10] 22.80 0.40 11.6

LBP-SVM ∗ [10] 34.40 2.40 18.40

M-BSIF-SVM ∗ [10] 20.00 5.60 12.80

Proposed scheme 2.40 2.00 2.20

Table 1 and 2 indicates the quantitative performance of

the proposed method when compared to 4 different state-of-

the-art schemes that were employed in the 1st Competition

on Counter Measures to Finger Vein Spoofing Attacks [10].

Since the state-of-the-art schemes are based on frame based

feature extraction and learning, we have used the training

set (see Section 4.1) that comprised of first 50 unique in-

stances with video frames to train the SVM classifier. A

final decision is obtained for the probe video by using ma-

jority voting that is, if the majority of the frames in the probe

video is classified as a real then the probe video is consid-

ered as real - otherwise as an attack. However, the proposed

scheme does not use any classifier based on learning, but it

still requires to compute the value of a threshold Th (see

Equation 3). We computed the threshold value using the

training set incorporating real (or normal) finger vein video

frames and kept constant on both types of artefacts used in

this work. This further justifies the generalisation capability

of the proposed scheme. Based on the quantitative results

obtained on the inkjet print artefact as tabulated in Table 1,

the proposed scheme outperforms the existing state-of-the-

art schemes with the best ACER of 2.20%.

Table 2 shows the results obtained on the laser print fin-



Table 2: Performance of the proposed scheme on laserjet

print artefact. (∗ reimplemented in Matlab)

Method APCER(%) NPCER (%) ACER (%)

Riesz transform-SVM ∗ [10] 7.20 79.60 43.40

LPQ+WLD-SVM ∗ [10] 13.20 1.60 7.40

LBP-SVM ∗ [10] 10.00 6.00 8.00

M-BSIF-SVM ∗ [10] 8.00 14.00 11.00

Proposed scheme 5.20 2.00 3.60

ger vein artefact. Here also it can be observed that the

proposed scheme outperforms the existing state-of-the-art

schemes with the best ACER of 3.60%. Thus, based on

the above experiments it can be observed that the proposed

scheme based motion magnification using EVM emerged

as the best finger vein presentation attack detection algo-

rithm. Kindly refer to https://youtu.be/iJvveXjWq2U for

more comprehensive results.

5. Conclusion

A presentation attack detection algorithm in finger vein
recognition must produce both a reliable and a robust solu-
tion to improve the practicality for finger vein biometrics.
In this research, we present a novel solution to identify an
attack on finger vein recognition based on magnifying the
blood motion in the finger vein. The proposed method is
tailored using Eulerian Video Magnification (EVM) to mag-
nify the motion and optical flow to compute the motion fea-
tures. We then used a simple classification scheme by com-
paring the motion magnitude obtained using optical flow to
the pre-set value of the threshold Th. The pre-set threshold
value is computed on the training set and kept constant on
the testing set. Since the proposed method is based on the
liveness measure by checking the blood flow, it can be gen-
eralised for any unseen attack. Extensive experiments are
carried out on two different kinds of finger vein artefacts
generated by printing a real finger vein images using laser
and inkjet printer. A comparative evaluation is presented by
evaluating the performance of the proposed scheme along
with four different state-of-the-art schemes. The experi-
mental results demonstrate the best performance of the pro-
posed framework with the lowest ACER of ACER of 2.20%
on inkjet print artefact and ACER of 3.60% on laser jet print
artefact.
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