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Abstract

Popular mobile banking and e-commerce applications like Google Wallet, Apple Pay and
Alipay have resulted in using personal devices like smartphones for secure access of services
via biometric data captured from embedded sensor. Further, the improved optics on
smartphones have been explored for biometric data capture in a contactless manner that
can be used for various secure authentication applications. Specifically, the applications
are exploring face, periocular, iris and finger photo characteristics for smartphone-based
authentication using the embedded camera operating in the visible spectrum.

This thesis is dedicated to explore iris, periocular and face data for authentication
applications when captured from smartphones in the visible spectrum. We first present
robust algorithms to use iris recognition for the data captured from the smartphones in an
unconstrained manner. Further, we propose a new imaging setup to resolve the iris texture
for images captured in the visible spectrum for subjects with heavily pigmented iris. As
an alternative to mitigate the lower performance of iris recognition in the visible spectrum,
we demonstrate the use of periocular characteristics for authentication. We then present
a robust algorithm for feature extraction from periocular images for verification purpose.
We also present a multi-biometric authentication system fully realized on the smartphone
with good verification accuracy for secure access applications. In the end, we present a
set of robust algorithms to detect the presentation attacks on the ocular biometric systems
working on the smartphones. Additionally, the implementation of most of the proposed
algorithms and the databases constructed during the course of this thesis are made available
to promote reproducible research in biometrics.






Abstract

Populeere mobile banktjenester og e-handel applikasjoner som Google Wallet, Apple Pay
og Alipay har resultert i & bruke personlige enheter som smarttelefoner for sikker tilgang
pa tjenestene via biometriske data som samles inn fra innebygd sensor. Videre har den
forbedrede optikken pa smarttelefoner blitt utforsket for biometrisk datainnsamling pa en
kontaktlgs méte som da kan brukes til ulike metoder for sikker autentisering i applikasjoner.
Narmere bestemt utforsker applikasjonene egenskaper ved ansikt-, periokuleer-, iris- og
fingerbilde for smarttelefon basert autentisering ved hjelp av det innebygde kameraet som
opererer i det synlige spekteret.

Denne avhandlingen er dedikert til & utforske iris-, periokulser- og ansiktsdata for
autentiseringsapplikasjoner nar de er samlet inn ved hjelp av en smarttelefon i det synlige
spekteret. Vi presenterer robuste algoritmer for a bruke irisgjenkjenning pa data samlet
inn med smarttelefoner der brukeren ikke ble palagt noen begrensninger. Videre foreslar
vi en ny avbildningsmetode for & ta klarere bilder av iristeksturen for bilder tatt i det
synlige spekteret nar personen har mgrk iris. Som et alternativ for & motvirke lavere ytelse
ved irisgjenkjenning i det synlige spekteret, utforsker vi egenskaper ved omradet rundt
gye (periokuleergodkjenning). Deretter presenterer vi en robust algoritme for uthenting
av trekk fra de periokulszere bildene, som kan brukes til verifisering. Vi presenterer ogsa
et multi-biometrisk autentiseringssystem, fullt implementert pa smarttelefon, med hgy
verifiseringsngyaktighet for sikker tilgang til applikasjoner. Til slutt presenterer vi et sett
med robuste algoritmer for a4 oppdage presentasjonsangrep i okulaer biometriske systemer
som kjgrer pa smarttelefoner. I tillegg er implementasjoner av de fleste foreslatte algoritmene,
og databasene som er samlet inn i lgpet av denne avhandlingen gjort tilgjengelig for a fremme
reproduserbar forskning innenfor biometri.
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Chapter 1

Introduction

The need to provide controlled access has increased for applications that range from highly
secure border crossing scenario to simple application such as smartphone unlocking. The
access control for a secure system can be based on three principles - ”"what I know”,
"what I have” and "what I am” [59]. Paradigm of ”"what I know” follows knowledge
based authentication where an user is expected to remember the passwords or passphrases.
The passwords can vary from simple 4 digit Personal Identification Number (PIN) to long
complex passwords with a combination of alpha-numeric keys along with special symbols.
While a simple PIN can be vulnerable to brute force attacks, long and complex passwords
are difficult to memorize. The complexity of remembering passwords further increases, when
different secure services impose custom rules for choosing passwords which vary from one
service to another.

The strategy of token based authentication can be classified under ”what I have”
authentication modes and it removes the necessity of remembering the passwords by
introducing additional authenticating devices. Although, they can be used independently, it
is advised to use such tokens for authentication in a complementary mode as they are prone
to theft[2, 95].

Alternatively, biometrics introduced a new paradigm of "what I am” approach which
is built upon the idea of using the physical or behavioural characteristics any individual
possesses or exhibits. The term biometrics refers to "automated recognition of individuals
based on their behavioural or biological characteristics” according to the definition given
by International Organization for Standardization (ISO) [51]. A biometric system for
secure access control establishes/verifies the identity of an user by capturing the measurable
physical and behavioural characteristics [56, 51]. The biometric system typically uses
fingerprint, face, iris, periocular, vein and voice among the most popular biometric modes
in physical characteristics while gait pattern and typing pattern are popularly used among
behavioural characteristics.

Biometric systems are becoming ubiquitous mode of secure access control as they remove
the necessity of "what I know” or "what I have”. Thus, biometric systems present convenience
to users while maintaining the security level. Traditional methods of employing numeric,
alphabetic or alpha-numeric pin codes to secure the device are limited to fixed length. In
consequence, the security of such access control methods is very limited, when expressed
as entropy of the pin code. For the most common case of arabic numerals (0-9), the
symbol count is 10 and thus, the entropy per digit H = 3.322 bits. For a common 4-digit
password the entropy is approximately 13 bits. Extending the password in length targeting
at higher entropy reduces the usability of the method by creating hassle in managing multiple
passwords of longer length [161]. Biometric characteristics for authentication provide higher
entropy than limited length passwords [119, 32]. The iris characteristics, for instance
provides 249 bits of entropy as compared to simple 4 digit numeric PIN with an entropy of 13
bits [32]. Further, the need of not remembering special passwords or carrying an additional
authentication device along with good security level via the use of biometric characteristics
has led to prevalent use of biometrics. The success of biometrics is exemplified by the wide
range of deployment in various border crossing applications [36, 57, 152, 38] and civilian
applications to provide identity in large scale application like AADHAR[44].

The popularity of biometrics has resulted in exploring new generation sensors apart from
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traditional sensors. This has led to the use of regular cameras and smartphone embedded
cameras that can provide sufficient quality of biometric data [57]. The use of smartphone
captured biometric data has been recently explored in commercial applications [148, 48].
Motivated by the robustness and convenience of biometrics, new generation applications
such as mobile banking and e-commerce applications have started employing biometric data
captured from smartphones [148, 48]. At the same time, smartphones are also providing
a platform for authentication in financial transactions via applications like Google Wallet,
Apple Pay, Alipay and core banking services [148]. As a result, smartphones are emerging
as authentication device through the use of biometric data captured in contactless manner
[34, 141, 148, 48, 73, 113]. One can deduce the rise of new paradigm for contact-less biometric
authentication using smartphones.

Thus, in this thesis, we explore periocular and iris characteristics for authentication
applications via the images captured from smartphones operating in visible spectrum
in a contactless manner. This thesis is a step towards the development of robust and
reliable algorithms for using iris and periocular images captured from smartphones in visible
spectrum for authentication while addressing potential presentation attacks (a.k.a, spoofing
attacks).

1.1 Background and Motivation

In this section, we discuss the background of the current thesis listing the major works and
then derive the motivation for this thesis by identifying the potential avenues.

1.1.1 Background

The use of smartphones has increased owing to factors such as affordable cost and
advanced features meeting the consumers’ expectations. Smartphones with good embedded
cameras have provided another reason for users to own a smartphone. Further, advanced
functionalities in the smartphones have resulted in using them as a device to store personal
data. Due to high amount of personal data stored in the current day scenario, the
smartphone have to be secured in the first place. Additionally, smartphones can be used as
devices for authentication or identification, making them both personal device and a device
for authentication.

Smartphone manufacturers like Apple, Motorola, Samsung, LG and Huawei have
integrated fingerprint sensors to capture contact-based biometric data in the new generation
smartphones. To reduce the burden of unnecessary device upgrades to newer generation
smartphones with embedded sensors, recent works have illustrated the employability of
smartphone cameras for contactless authentication with fingerphoto recognition [113, 128,
143] with good performance for authentication. Hoyos Labs has launched a commercial
verification system on smartphones which uses four finger photos from a single hand captured
in contactless manner for verification purposes [48].

In the same direction of contactless data capture on smartphones using the embedded
camera, set of initial works have focused on employing face images captured for biometric
authentication [147, 141, 89]. Recent works have progressed from 2D face recognition on
smartphones to 3D face recognition where the images were used to reconstruct the 3D face
representation from a video recording of face from smartphone [116]. It has to be noted that
these earlier works have captured the data from smartphone/mobile-phone and the actual
systems were implemented on regular desktop environments [147, 141, 89, 116]. Thus, the
face based biometrics system working on the smartphone itself has not been explored to larger
extent except in the very recent work [34).

The challenges of unconstrained face data capture i.e., changes in pose, illumination
and expression (PIE) are also applicable for the data captured from smartphone in real-life.
When the face image is captured, the periocular characteristics are acquired inherently.
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The periocular region, which is constituted by the region around the eye that includes the
eye-lids, creases and folds formed by eye-lids along with the eye-brow was demonstrated
as an additional characteristic for biometric recognition [102, 101] and the applicability of
periocular region to improve the lower performance of face recognition under degraded data
due to factors of PIE was shown earlier [102, 101]. A biometric system can leverage at-least
one of the two independent characteristics to provide reliable recognition under the presence
of non-uniform pose, illumination or expression in face.
To summarise, periocular region provides two fold benefits:

1. Periocular region inherently captured in iris imaging systems can be used to solve the
challenges arising due to non-ideal iris imaging in visible spectrum.

2. It can also be used to complement the performance of biometric systems in
unconstrained face recognition scenarios as the face image may present acceptable
periocular features.

Even though the benefits provided by the periocular region is motivating for the biometric
applications, the need for large scale validation of performance for smartphone captured
periocular image remains open.

Another biometric characteristic present in the face region is the iris. Iris recognition has
been well explored in Near-Infra-Red (NIR) spectrum due to the robust performance in terms
of verification accuracy [29]. The performance of iris recognition and reported error rates
with impressive billion comparisons [31] has motivated iris recognition in visible spectrum
[108]. The increase in interest for visible spectrum iris recognition in the last decade has
resulted in number of works probing the relevance and applicability using regular color
capable cameras [108, 107, 100, 35, 106, 16, 124]. The promising performance in visible
spectrum has resulted in limited works actively looking to employ various color capable
imaging devices such as mobile and smartphones for iris recognition [34, 129, 71, 76, 61].

Even though the promising nature of iris recognition in visible spectrum advocates
its applicability, number of challenges arise while using it in practical applications. The
key factor for moving to NIR spectrum for iris recognition was due to non-visibility of
the complex trabecular mesh of iris pattern in visible spectrum imaging [3, 29]. Larger
concentration of melanocytes and melanin in the anterior layer and stroma makes the iris
appear dark in color [134]. Alongside melanin, collagen fibrils also contribute to the color
appearance of the iris where higher density of collagen results in darker iris color [134].
Further, human melanin pigment is observed to have a peak absorption at 335nm [79] and
thus, higher density of melanin absorbs light in shorter wavelength (visible spectrum) hiding
the complex trabecular mesh of iris. The quality of texture seen is inversely proportional to
the pigmentation density implying very low visibility for highly pigmented iris images and
vice-versa in visible spectrum. The NIR spectrum usually penetrates beyond the melanin
to capture the iris pattern whereas the visible light is absorbed resulting in limited texture
visibility. Thus, the challenge of resolving the texture pattern for heavily pigmented iris for
images captured in visible spectrum using regular cameras including smartphone embedded
cameras is a limiting factor to achieve iris recognition in visible spectrum to full potential
[107, 108, 76, 34, 129]. As an alternate solution, smartphones like Fujitsu NX F-04G,
Microsoft Lumia 950, Microsoft Lumia 950 XL and Samsung Note7 have thus advanced
to integrate infra-red illumination to capture iris images. However, this limits the use of
the smartphone in existing form to capture the iris without a mandatory upgrade to devices
with built-in infra-red sensor. Thus, the need for innovative imaging solutions to obtain iris
images with good texture from smartphones in visible spectrum for heavily pigmented iris
pattern remains open.

Further, even the mildly pigmented iris when captured in visible spectrum is impacted
by number of factors such as ambient reflection, partial closure of eyes, shadows from eye
lashes, out of focus imaging and motion-blur that impact the segmentation and subsequently
recognition performance. The complexity of the segmentation increases for dark colored or



1. INTRODUCTION

heavily pigmented iris as the boundary between the pupil and the iris region cannot be
traced easily [76, 61, 60]. Higher segmentation accuracy with robust noise masks is a key to
achieve reliable verification performance in iris biometrics [80, 61, 60]. As there is no fixed
capture distance between the subject and the camera in unconstrained capture, specifically
in a hand held iris acquisition from smartphone, the segmentation can be challenging due
to yet another factor resulting in varying pixel spread of iris pattern on the sensor. In the
case of standard NIR iris images, the known range of the iris pattern diameter is used to
estimate the radius and boundary of the iris in stop-and-stare devices which does not hold
good for visible spectrum iris images. The problem of varying iris diameter can also be
acknowledged for unconstrained iris capture using NIR, sensors embedded on smartphones
like Fujitsu NX F-04G, Microsoft Lumia 950 and Microsoft Lumia 950 XL. Therefore, an
approach to estimate the range of iris boundary at-least to coarser range is needed for
unconstrained iris capture from smartphone to adapt existing segmentation scheme and
obtain good segmentation accuracy.

Although, iris, periocular or face regions provide a basis for achieving secure biometric
systems on smartphones by exploring discriminative information, the systems employing
them can be considered reliable if they cannot be attacked at various level of operations
[40, 41]. The systems can be attacked starting from the capture level at sensor to decision
level in the pipeline of the biometric systems. The possibility of attacking the system can
be significantly less under the human supervision at the capture level. However, under the
scenarios of capture in smartphones, it is usually assumed there is no human supervision
or minimal supervision if any. The risk of attacks on any biometric systems operating
via smartphone to capture biometric data is relatively high owing to the ease of artefact
creation due to availability of high quality face images in present day social media [103].
The face image obtained from such sources can be used to extract periocular and iris
characteristics seen in visible spectrum for preparing the artefact to attack the biometric
systems. Thus, robust presentation attack detection techniques are needed to make biometric
systems employing smartphone for capturing the biometric data reliable.

1.1.2 Motivation

Based on the discussion presented in the previous section, we derive motivation for our
research in this thesis which is outlined in the current section.

There are not many works reported on using iris for authentication with the data
captured from smartphone (except [34, 129]) even for a considerable population with light
or mildly pigmented iris. Hence, this thesis presents a comprehensive work to evaluate the
applicability of smartphone captured iris data in visible spectrum. We explore reliable ways
of iris recognition for data captured in smartphones by leveraging on discriminant features.
Further, we present a image capture set-up using a simple LED to acquire high quality
iris data in visible spectrum. The iris images obtained using the set-up demonstrate better
texture visibility as compared to images acquired normally in visible spectrum and thereby
are explored to achieve good verification performance.

The success of periocular recognition has not been well adopted for biometrics
authentication using data captured from smartphone (except in our earlier work [73]). In this
thesis, we employ periocular region for reliable authentication on smartphones. We present
robust algorithms to obtain good verification performance for unconstrained periocular data
captured on smartphones.

The reliability of a biometric system comes with a set of good counter-measures
incorporated within the system towards presentation attacks. We present a set of texture
based and video based presentation attack detection techniques for addressing attacks on
ocular biometric system. In the end, we present a multi-modal system employing face,
periocular and iris characteristics for secure authentication on smartphones.

It has to be noted that, a set of algorithms are tailored specifically for the smartphone
platform and a couple of algorithms are implemented € tested on the desktop platforms in

4
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this thesis. We thus, formulate the research questions specifically aligned with motivation
for this thesis as listed below:

Q1

Q2

Q3

Q4

Q5

1.2

Can iris images captured using smartphones in visible spectrum be used for reliable
iris recognition?

Is it possible to capture heavily pigmented iris with good texture details in visible
spectrum for iris recognition?

Can periocular region captured on smartphones be used as a complementary
characteristic by exploring robust features to improve the lower performance from
iris in visible spectrum?

Can the ocular biometric systems operating on the smartphones be robust against
presentation attacks at the capture level by employing texture and motion based
algorithms?

Can the biometric system be realized to employ multi-biometric characteristics (face,
periocular and iris) on smartphone to provide reliable authentication system?

Contributions

In the due-course of answering the research questions mentioned above, this thesis has
resulted in major contributions outlined below.

Deep Sparse Filtering for Reliable Iris Verification

This contribution corresponds to the first research question [Q1] pertaining to
reliable iris recognition.

As the iris image is influenced by different factors such as ambient light
reflection, partially closed eye-lids when captured in visible spectrum, especially
on smartphone, the features extracted need to be highly discriminative to achieve
reliable recognition performance. The discriminability can be achieved using
multi-level features obtained using set of filters that yield multiple meaningful
features. This is achieved by learning set of Sparse Filters to represent the iris
image robustly.

In particular, the deep sparse filtered feature representation achieves
higher verification accuracy in unconstrained iris recognition compared to
state-of-the-art methods indicating the reliable performance of iris recognition in
visible spectrum using the images captured from smartphone.

- Related chapter for this contribution:

Chapter 3 - Deep Sparse Filtered Features for Iris Recognition in Visible
Spectrum.

- Related publications for this contribution:
— Kiran B. Raja, R. Raghavendra, Vinay K. Vemuri, Christoph Busch,

’Smartphone Based Visible Iris Recognition Using Deep Sparse Filtering’,
Pattern Recognition Letters (PRL), 57(1), pp. 33-42, 2015.

Imaging Heavily Pigmented Iris Using Low Cost White LED Similar to
Flash on Smartphones to Resolve Texture in Captured images

This contribution relates to the second research question [Q2] on capturing the
images in the visible spectrum with good texture details for heavily pigmented
iris.
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The texture quality of iris is heavily dependent on the pigmentation density of
melanin which absorbs the visible light. As the light is not reflected back in
heavily pigmented iris, specifically for subjects originating from Asian and African
ethnicities, it is challenging to capture the iris images with good texture quality
in visible spectrum.

- An imaging set-up with a white Light Emitting Diode (LED) is explored
to capture high quality iris images which are unlikely to exhibit trabecular
mesh if captured in normal imaging mode in visible spectrum. The LED is
employed to mimic the illumination of flash embedded in smartphone cameras
to obtain a solution realizable on smartphones.

- The set of images obtained are bench-marked along with images from
standard NIR images for the verification performance.

Better texture visibility and at-par verification accuracy in visible iris recognition
is demonstrated as compared to standard NIR iris imaging method.

- Related chapter for this contribution:

Chapter 4 - Imaging Heavily Pigmented Iris in Visible Spectrum using White
LED.

- Related publications for this contribution:

— Kiran B. Raja, R. Raghavendra, Christoph Busch, 'Iris Imaging in Visible
Spectrum using White LED’, In proceedings of the 7th IEEE International
Conference on Biometrics: Theory, Applications and Systems-BTAS 2015,
Arlington-Virginia., USA, Sept. 2015.

e Deep Sparse Time Frequency Features for Robust Periocular Verification

This contribution addresses the research question on improving the lower
performance of iris recognition due to unconstrained data in visible spectrum by
using the region around eye. A robust feature extraction is presented to obtain
the features from periocular region to address the question [Q3].

As the challenges of iris recognition remain open in unconstrained acquisition
on smartphones, we explore robust algorithms for periocular recognition. The
idea of making periocular features discriminative leverages on time and frequency
features obtained by convolving a set of Deep Sparse Filters learnt from natural
images.

- Large scale experiments are conducted on publicly available periocular
databases captured on smartphones. In particular, the experiments
on heavily degraded periocular data indicate the applicability of
Deep Sparse Time Frequency Features (DeSTiFF) to improve the
verification performance.

- Related chapter for this contribution:

Chapter 5 - Deep Sparse Time Frequency Features for Robust Verification of
Periocular Images From Smartphones.

- Related publications for this contribution:

— Kiran B. Raja, R. Raghavendra, Christoph Busch, ‘Collaborative
Representation of Deep Sparse Filtered Feature for Robust Verification of
Smartphone Periocular Images’, In proceedings of 23rd IEEE International
Conference in Image Processing (ICIP-2016), Arizona, US, 2016.

— Kiran B. Raja, R. Raghavendra, Martin Stokkenes, Christoph Busch,
‘Smartphone Authentication System using Periocular Biometrics’, In

proceedings of International Conference on Biometrics - Special Interest
Group (BIOSIG-2014), Darmstadt, Germany, 2014.
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¢ Robust Algorithms for Presentation Attack Detection on Ocular Biometric
Systems

The algorithms to make the authentication system robust against presentation
attacks is presented as a contribution to address the fourth question [Q4].

In order to ensure the ocular biometric systems to not compromise at the
capture level by presenting artefacts, we provide a set of reliable algorithms.
The algorithms are based on both texture and video based techniques to detect
artefacts presented to smartphone cameras to acquire biometric characteristics.

- The presentation attack detection algorithms in this thesis address both
electronic screen and normal print attacks. The print attacks are reliably
detected using texture descriptors based on Laplacian decomposed time —
frequency responses and Laplacian decomposed color adaptive hybrid
patterns presented in this thesis.

- The electronic screen attacks with video replay are detected using the video
based attack detection leveraging the phase information from Fulerian Video
Magni fication tailored with a specific decision module for ocular image
characteristics.

Evaluation of the texture and video based techniques on publicly available
presentation attack datasets have shown robust performance when compared to
state-of-art-techniques.

- Related chapter for this contribution:

Chapter 6 - Presentation Attack Detection for Ocular Biometrics on
Smartphones.

- Related publications for this contribution:

— Kiran B. Raja, R. Raghavendra, Christoph Busch, ’Presentation Attack
Detection using Laplacian Decomposed Frequency Response for Visible
Spectrum and Near-Infra-Red Iris Systems’, Proceedings of the 7th
IEEE International Conference on Biometrics: Theory, Applications and
Systems-BTAS 2015, Arlington-Virginia, USA, Sept. 2015.

— Kiran B. Raja, R. Raghavendra, Christoph Busch, ’Color Adaptive
Quantized Patterns for Presentation Attack Detection in Ocular Biometric

Systems, In proceedings of 9th International Conference on Security of
Information and Networks (SIN 2016), New-Jersy, USA

— Kiran B. Raja, R. Raghavendra, Christoph Busch, ’Video Presentation
Attack Detection in Visible Spectrum Iris Recognition Using Magnified Phase

Information’, TEEE Transactions on Information Forensics and Security
(TTIFS), 2015.

¢ Multi-Biometric Secure Authentication System on Smartphone

This contribution presents the multi-biometric authentication system on
smartphones corresponding to the question formulated in [Q5].

We adapt and apply previously explored state-of-art algorithms to realise an
authentication system for smartphones using multi-biometric characteristics.
Specifically, we explore face, periocular and iris region to perform authentication
using the system on the smartphone. The applicability of the presented system is
demonstrated with a high verification performance on a database collected using
the authentication system.
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- The authentication system is demonstrated systematically to work on
smartphones with reliable verification performance for each of the
characteristics present in the face region - face, periocular and iris.

- The improved performance with fusion of multi-biometric characteristics
at both feature level and comparison score level demonstrates the reliable
performance while indicating the efficacy to use it in everyday authentication
needs using smartphones.

- Related chapter for this contribution:

Chapter 7 - Multi-biometric Authentication System for Smartphones Using
Face, Periocular and Iris.

- Related papers for this contribution:

— Kiran B. Raja, R. Raghavendra, Martin Stokkenes, Christoph Busch,
"Multi-modal authentication system for smartphones using Face, Periocular
and Iris’, In proceedings of IAPR International Conference on Biometrics
(ICB-2015), Phuket-Thailand, 2015.

— Kiran B. Raja, R. Raghavendra, Martin Stokkenes, Christoph Busch,
"Fusion of Face and Periocular Information for Improved Authentication

on Smartphones’, In proceedings of 18th International Conference on
Information Fusion (FUSION 2015), Washington DC, 2015.

1.2.1 Contributions for Reproducible Research

This section lists the databases and code for the algorithms developed during the course of
this thesis along with the details on availing them.

Algorithms and Code

e Matlab implementation of Deep Sparse Filters for extracting features from visible
spectrum iris images can be availed at:
www.nislab.no/biometrics_lab/code/deepsparse_iris.

o Matlab implementation of Deep Sparse Time-Frequency Features (DeSTiFF) for
extracting features from periocular images captured in visible spectrum can be found
at:
www.nislab.no/biometrics_lab/code/destiff_periocular.

o Matlab implementation of two algorithms for presentation attack detection (Laplacian
Pyramid Color Adaptive Quantized Hybrid Patterns and Laplacian Pyramid
Decomposed Frequency Response Features) contributed from this thesis can be found
at:
www.nislab.no/biometrics_lab/code/pad_lpfr_lachp.

Databases

e Visible Spectrum Smartphone Iris (VSSIRIS) database consisting of iris images
captured in visible spectrum from two different smartphones - iPhone 5S and Nokia
Lumia 1020. The database can be availed from:
www.nislab.no/biometrics_lab/vssiris_db.

e Visible Spectrum Smartphone Periocular (ViSPer) database consists of periocular
images collected from three different smartphones (iPhone 5S, Nokia Lumia 1020 and
Samsung S5) operating visible spectrum. The details for availing the database can be
found at:
www.nislab.no/biometrics_lab/visper_db.
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Presentation Attack Video Iris Database (PAVID) presents the Bona Fide videos
corresponding to mnormal presentations and Artefact videos corresponding to
presentation attacks captured from two different phones (iPhone 5S and Nokia Lumia
1020) in visible spectrum. The attack videos are replayed using high quality display
enabled iPad. The details of availing database can be found at:
www.nislab.no/biometrics_lab/pavid_db.

1.2.2 Other Contributions

This section lists additional publications on iris and periocular recognition during the course
of this thesis work.

Kiran B. Raja, R. Raghavendra, Christoph Busch, 'Biometric Recognition of Surgically
Altered Periocular Region : A Comprehensive Study’, In TAPR International
Conference on Biometrics (ICB-2016), Sweden, 2016.

Kiran B. Raja, R. Raghavendra, Christoph Busch, ‘¢ Weighted Comparison Score
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1. INTRODUCTION

1.3 Thesis Outline

This thesis is organized in seven chapters and a summary of each chapter is provided in this
section.

In this first chapter, the motivations, objectives and contributions of this work were briefly
summarized.

Chapter 2 gives an overview of tools, state-of-art techniques for feature extraction and
feature comparison. In addition, this chapter lists a set of metrics, which are used to
evaluate presented systems in the rest of thesis.

In Chapter 3, the iris recognition framework for images captured using smartphone in visible
spectrum is introduced. Next, an iris radius approximation method is presented along with
the experiments indicating the improved verification accuracy as a result of prior processing
to existing segmentation scheme. Further, deep sparse filtering for iris feature extraction
is introduced along with the set of experiments to determine the strength of the method in
achieving higher verification accuracy.

Chapter 4 introduces a new imaging set-up using a white LED to resolve the texture pattern
from iris for subjects with heavily pigmented iris. The images obtained are benchmarked
against the iris images captured using a standard NIR device.

Chapter 5 builds upon the challenges of iris recognition in visible spectrum for unconstrained
acquisition from smartphones. An alternative approach using periocular characteristics is
explored to address lower verification accuracy due to low quality iris images. Additionally,
feature extraction technique leveraging on time and frequency features obtained from

deep sparse filtering is explored to obtain discriminative features to perform periocular
verification along with the large scale experiments on the publicly available periocular
databases acquired using smartphones.

Chapter 6 presents the counter-measures against the potential presentation attacks at the
capture level on smartphones. In particular, both the texture based and motion based
approach are discussed along with the experiments comparing against the well explored
state-of-art attack detection schemes. The significance of the methods and the relevance to
smartphone ocular images are discussed.

Chapter 7 describes the application of the multi-biometric (face, periocular and iris)
characteristics for smartphone based secure authentication systems. The experiments
evaluate both unimodal and multi-modal approaches along with the feature level and
comparison score level fusion to obtain a decision. In particular, the relevance of the
employed methods with respect to smartphone platforms are discussed.

Chapter 8 concludes this thesis by providing a summary of the major contributions and
findings. Potential directions for future work are also discussed in this chapter.
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Chapter 2

Tools, Techniques and Performance Metrics

This chapter introduces the tools and techniques in current state-of-art methods used
throughout the thesis. We also present commonly used metrics for evaluation of biometric
systems in this chapter.

2.1 Feature Descriptors for Biometric Data

The image representations in the classification problems including biometrics have a
preference to extract meaningful features rather than using raw images. The vast set of
features leveraged in face biometrics can be categorized in three levels [77]. Level 1 features
concentrate on facial characteristics that are easily observable in a face, such as skin color,
gender, and the general appearance of the face while Level 2 features consist of localized
face information that include structure of the face, relations within facial components and
the shape of the face. Level 3 mainly focus on specific properties such as facial marks, skin
discoloration, and moles. The features categorized under Level 2 features are highly relevant
for biometric recognition of face as the features are locally derived to describe structures
and spatial uniqueness [77].

Although, the categorization was mainly based on the face features for biometric
recognition, the taxonomy of feature set by itself can be generalized for periocular region
which is inherently present in the face region [77]. As periocular region is inherently
present in the face region, Level 2 features hold good for the periocular recognition.
Gabor wavelet features [154], Local Binary Patterns (LBP) [4], Binarized Statitical Image
Features (BSIF) [64], Scale Invariant Feature Transform (SIFT) [83] and Speeded-Up Robust
Features (SURF) descriptors [9] can be cited as the most prevalently used feature extraction
techniques to obtain feature descriptors. The benefit of using Level 2 features stem due to
the fact that the local features can generally be computed independently of one another in
particular spatial coordinates of the image.

In this chapter we present a brief overview of the feature descriptors used in the
subsequent chapters throughout this thesis. Specifically, we discuss the approaches of feature
extraction with BSIF SIFT and SURF. The choice of BSIF to obtain texture features is based
on the superior performance as compared to Gabor Wavelets or LBP features reported in
earlier work [64].

2.1.1 Binarized Statistical Image Features

Any of the texture feature extraction approaches can be assumed to follow the general
guidelines of filtering the image with a set of linear filters and quantizing the response
of filter. Binarized Statistical Image Features (BSIF) [64] obtained using natural image
statistics [50] are used to learn the filters instead of hand-crafted filters. The set of filters
obtained can be used to convolve the images and extract the texture features [64].

In order to obtain a useful set of filters s;, the statistical independence is maximized
using independent component analysis (ICA). A filter matrix W is decomposed into two
parts such as

s=We=UVz=Uz (2.1)
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where z = Vz, and U is a square matrix of n X n dimension obtained via ICA. Matrix
V is used to perform simultaneous whitening and dimensionality reduction using principal
component analysis (PCA). Given whitened data samples z, the independent component
analysis is used to estimate an orthogonal matrix U. Finally, given U and V', one obtains
the filter matrix W = UV [50, 64].

Generally, a set of filters of patch size [ x[ are learnt using natural images and independent
component analysis (ICA) [50, 64]. Patch size [ is defined as :

l=2xn+1)

such that n ranges from {1,2...8}. Unlike any other binary descriptors such as local binary
pattern (LBP) or local phase quantization (LPQ), the filters are learnt using natural image
statistics. If an image is represented using I(z,y) and the filter is represented by H;(z,y)
where ¢ represents the basis of the filter, the linear response of the filter s; can be given as
[64]:

si= Y I(u,v)H;(u,v) (2.2)

where x,y represents the dimension of image and filter. The response is further binarized
based on the obtained response value. If the linear filter response is greater than the
threshold, a binarized value of 1 is assigned. This operation can be formulated as [64]:

bi{l’ ifs; >0 (2.3)

0, otherwise

The obtained responses at different basis is used to construct the new gray code for the pixel
value.

Since the descriptors are constructed using the filters learnt through set of natural
images, the response of the filters achieved are maximally independent in terms of statistical
significance [64]. Based on the descriptors being derived from the statistics of the image,
the constructed feature set of an image is termed as Binarized Statistical Image Features
[50, 64].

Figure 2.1 illustrates a sample image and the corresponding filter response obtained
using BSIF filters of different patch (scale) size with a basis value of 8. It can be seen that
the features obtained in each different patch size varies from the other as shown in Figure
2.1(b)-(d).

Figure 2.1: Features extracted with various patch sizes (a) Original image; (b)-(d) Features
obtained using BSIF filters with patch size 9, 13 and 17

2.1.2 Scale Invariant Feature Transform

Scale Invariant Feature Transforms (SIFT) are based on extracting the key-points and
computing the descriptors from the images across the scale space [82]. The images are
decomposed using Difference of Gaussian (DoG), which is based on Gaussian blurring of
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images. The DoG for an image is first found in different octaves, which are then searched
for local extrema in both scale and space [83]. The key-points are localized which is followed
by orientation assignment for each key-point. Finally, a neighbourhood of 16 x 16 is divided
into sub-blocks of 4 x 4 resulting in 128 values which is considered as the descriptor for
a particular key-point. The use of SIFT for periocular recognition was well illustrated for
biometric applications earlier [13, 101, 158, 73, 75, 74].

2.1.3 Speeded Up Robust Features

Speeded Up Robust Features (SURF) are another class of features based on key-points [9].
As compared to SIFT, SURF was primarily designed to overcome the slower processing
time to obtain features at different key-points localized. SURF is based on the Box filters
to approximate the Laplacian of Gaussian (LoG) to obtain scale space decomposition of the
image. Further, it can be done in parallel for different scales and SURF relies on determinant
of Hessian matrix for both scale and location.

SURF also uses wavelet responses in horizontal and vertical direction for a neighbourhood
of size 6 x 6 pixels to obtain the orientation information. The dominant orientation is
estimated by calculating the sum of all responses in a sliding orientation window of angle
60 degrees. A neighbourhood of size 20 x 20 pixels is considered for detecting the key-point
and the image is divided into 4 x 4 subregions where horizontal and vertical wavelet responses
form feature descriptor with total 64 dimensions. With the lower dimension as compared to
SIFT, the speed of computation and comparison is improved for SURF.

SURF was well explored for periocular recognition on regular imaging devices [101, 158]
and smartphone platforms in earlier works [73, 75, 74].

SURF Features BSIF Features
Figure 2.2: Illustration of features extracted using SIFT, SURF and BSIF for a sample
periocular region.

Figure 2.2 illustrates the features detected for a sample periocular image using SIFT,
SURF and BSIF feature extraction techniques.

2.2 Feature Classification

The obtained features of two images need to be measured for the similarity (or dissimilarity).
The scores of similarity (or dissimilarity) are used as the genuine score in biometrics if they
stem from the same class or subject for a particular characteristics else it is considered
as impostor score. The plausible choice to determine the scores can employ a simple
distance metric to measure the similarity (or dissimilarity). As in many cases, simple
distance measures do not provide robust scores of similarity (or dissimilarity), advanced
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approaches have been devised to leverage the knowledge from machine learning domain
which have resulted in better distance computations. The robust classification approaches
using dictionary representation of features and classification using sparse representation
or collaborative representation have demonstrated better classification accuracy in many
applications including biometrics [163, 156]. In this thesis, we have employed both simple
distance measures and dictionary classification approaches discussed in this section.

Generally, the computational complexity increases significantly when a large set of
features from large sized images are used for computation. A compact representation
using histograms of many features, especially in textures have shown similar performance
as compared to engaging the set of features in the large feature space [4, 162, 64]. Thus,
it can deduced that the features can be represented in compact histogram representation
while not loosing significant performance in comparing two images. In this thesis, we have
employed the histogram representation of texture features for computing the similarity (or
dissimilarity) scores.

2.2.1 Bhattacharya Distance Measure

Histogram features for two different images can be measured using distance measures such as
Euclidean distance, x? distance, Bhattacharya distance among many others. We employ
the Bhattacharya distance which is related to the Hellinger distance to determine the
similarity between two histograms. Let the histogram for image ¢ be represented by H; and
histogram for image j be represented by H;, then the Bhattacharya distance between the
histograms is given by :

B(H;, Hj) = [1- S S > "\ Hi(k) * H; (k) (2.4)
\JH; *x Hj x N2 %

where N is the number of histogram bins and Hj, E present the mean values of the
histogram of image i and j. A score of value 1 is obtained for two histograms which are
exactly same. The Bhattacharya distance (B) is symmetric between two distributions p
and g which can be indicated as in Eqn. 2.5.

B(p,q) = B(q,p) (2.5)

2.2.2 Approximate Nearest Neighbours (ANN)

The key-points and descriptors obtained from both SIFT and SURF can be compared
using distance metrics used in vector spaces. The large size of descriptors can result in
heavy computational complexity. An improved way of comparing such large descriptors
relies on tree based indexing and matches [93, 18]. Fast Library for Approximate Nearest
Neighbours (FLANN) [93, 18] provides a set of optimized feature comparison methods which
can automatically select indexing trees for features using Approximate Nearest Neighbours
(ANN).

FLANN can be realised using Hierarchical K-means Tree for SIFT and SURF feature
comparison with a predefined number of nearest neighbours. Nearest neighbours are
discovered by choosing to examine the branch-not-explored nodes along the way in the
tree. Specifically, the FLANN with a Best-Bin-First approach to form Approximate
Nearest Neighbours (ANN) from Hierarchical K-Means Tree with 2 nearest neighbours are
predominantly in many of the object recognition problems [83]. The matched key-point is
only counted as a good match when the second nearest neighbour is 0.8 times farther than
the first from the set of obtained matches [83].

The fraction of good matches with respect to the total number of matched points can
be treated as the similarity score. Higher number of good matches indicate high similarity
of the two samples (images).
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2.2.3 Sparse Representation Classification

Any problem in classification which uses labelled training samples from k distinct classes
relates to correctly determining the class to which a new test sample belongs. Sparse
representation of signals has proven to be highly effective in classification problems [156].
Sparse representation analyzes a signal y over a dictionary ® such that y ~ &« and « is
a sparse vector of features. The sparsity of o can be measured by [y — norm, which is
equivalent to the number of non-zeros in «. An approximation of I; — minimization, is
used as the closest convex function to lg — minimization to save the expensive computation
and thus solving a sparse representation problem can be measured as min, || « |1 s.t. ||
y—Pa |2 €, where € is a small regularization constant. Different approaches for the
Iy — minimization can be used which include Spectral Gradient Projection, Homotopy,
Iterative Shrinkage-Thresholding, Proximal Gradient, and Augmented Lagrange Multiplier
(ALM). The steps in the classification approach can be outlined as:

1. Given the set of known samples for a particular class, training representation T is
created. Similar training class representation is constructed for different classes in the
classification task.

T=[T,Ts,..,Tc] € RN*(MuC) (2.6)

where n,, denotes the number of training samples for each class and N indicates the
dimension of the features for C' different classes.

2. Given the feature vector of the a new sample T,, one can assume a linear relation
between the training class representation (T') and a testing sample (7.) as:

T.=Txa (2.7)

where, a = [a1, ..., a1p, |,]| @2, ..y @20, |, | @,y aon,]

3. The established relation of linear combination between 17" and T, can be modelled as
a 1 minimization problem such that:

& = arg ageli}g]" /|1 Te = T/ (2.8)

4. Compute the reconstruction error corresponding to the testing sample and training
class representation.
err(y) = [|Te —Ic(a)[|2 (2.9)

where y represents the number of test samples for a class and II represents the combined
representation of the training class .

5. The minimum reconstruction error of all the sparsely represented signals is used to
map the test sample to the particular class.

The obtained scores provide the closest distance to the number of different classes which
can be treated as dissimilarity score. The higher is the score with respect to a particular
class, the farther away is the test sample to that training class representation.

2.2.4 Collaborative Representation Classification

A collaborative representation overcomes the deficiencies of sparse representations, when
the class representation is imbalanced while significantly reducing the computation time
and resource [163]. The features are represented collaboratively from different classes to
learn the dictionary ®. The learnt dictionary ® is used to classify the features of test
sample by imposing regularised I norm [163]. The distance between the testing sample and
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the dictionary representing all different classes is then computed by projecting it as Least
Square Regression problem [163]. The problem can be represented as:

F=arg ming | f —®alz + A o |3 (2.10)

where the ® is the learned dictionary, « is coefficient vector and A is the regularization
parameter.

The score obtained from the comparison to the dictionary samples is treated as a
dissimilarity score which is lower for the samples stemming from the same class in the
dictionary representation.

2.2.5 Support Vector Machines (SVM)

Support Vector Machine (SVM) [146, 24] is a classifier which is able to learn a class
discriminating hyperplanes separating the set x = {(xx, yx)|k = 1...S} of training samples
in R4{=11} while minimizing its generalization error on unseen samples belonging to any of
the classes. The minimization of the generalization error is performed via maximization of a
decision boundary margin between the classes. SVM can be generalized as maximal margin
classifier where the boundary is learnt by the samples from two classes forming the extreme
margin such that rest of the samples lie within the boundary and margin boundaries are
referred as support vectors.

The training of a SVM is realized by estimating the parameters via real valued linear
function f : R¢ = R. The learnt classifier is used to classify the unknown samples or testing
samples. For each input sample z;, a score is computed using the linear function f(xy). This
function can be also represented in a dual form, where it is parameterized by the support
vectors and a set of Lagrangian multipliers associated with them.

Higher separability between two classes can be achieved by projecting the samples(data)
into high dimensionality space which is computationally expensive. However, the dual
forms of support vectors also support the computation of score for an input sample xj
through its inner products with the support vectors. The dual form thus allows to bypass
the computationally expensive high dimension projection simply by using kernel functions.
Among the different kernel functions to learn discriminative margins, linear, Radial Basis
Function (RBF), Polynomial, Histogram Intersection and x? are predominantly used.

2.2.6 Spectral Regression Discriminant Analysis (SRDA)

Spectral Regression Discriminant Analysis (SRDA) is another classifier that learns the
discriminating boundary by maximizing the between-class covariance and simultaneously
minimizing the within-class covariance [22]. SRDA uses spectral graph analysis and casts
discriminant analysis into a regression framework which is efficient in computation as
compared to Linear Discriminant Analysis(LDA) methods. SRDA performs discriminant
analysis on the data projected in space induced by a non-linear mapping. Further, the
subspace is analysed using spectral graph analysis followed by regression which facilitates
both efficient computation and the use of regularization techniques. Specifically, SRDA
only needs to solve a set of regularized least squares problems and there is no eigenvector
computation involved, which is a huge save of both time and memory [22]. SRDA solves the
classification problem by projecting it as a set of regularized least squares problems which
includes no computation of eigenvector [22].

2.3 Iris Recognition Tools

This section presents three iris recognition tools, which are used in this thesis. Of the three
systems, two tools are publicly available academic implementation which are distributed as
University of Salzburg Iris Toolkit (USIT v1) [122] and Open Source Iris Toolkit (OSIRIS
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v4.1) [135]. The third is a commercial-off-the-shelf iris recognition tool from Neurotech
Inc.[148].

2.3.1 University of Salzburg Iris Toolkit (USIT v1)

USIT v1 Toolkit [122] provides state-of-the-art reference systems, which serve as adequate
starting point for new research in iris biometrics for NIR systems. The toolkit provides
two different segmentation techniques tailored for NIR domain which include segmentation
schemes with Contrast-adjusted Hough Transform and Weighted Adaptive Hough and
Ellipsopolar Transform.

The toolkit also provides seven different reimplemented feature extraction schemes
prevalently used in NIR domain such as 1D-LogGabor [91], Complex Gabor features [29],
feature extraction based on local variations [85], context based iris features [121], feature
extraction based on intensity variations [120] and features based on cumulative-sum-based
change analysis [78]. Along with the feature extraction methods, the toolkit provides
corresponding comparators to be used for each different feature extraction techniques.

2.3.2 Open Source Iris Toolkit (OSIRIS v4.1)

OSIRIS v4.1 [135] is another freely available toolkit designed to work for iris images captured
in NIR domain. The segmentation scheme is based on the robust contour localization based
on Daugman’s work [29]. Further, the toolkit estimates noise mask for iris pattern robustly
using Viterbi search and anisotropic diffusion. The toolkit provides complex 2D Gabor
features reimplemented from Daugman’s work [29] along with the Hamming Distance (HD)
based comparator.

2.3.3 VeriEye - Neurotech

Neurotech Inc.[148] provides a widely used commercial iris recognition tool in secure access
control applications. The technical details of the tool are not disclosed to the best of our
knowledge.

2.3.4 2D Gabor Features

Gabor filters belonging to the class of bandpass filters are generally used for feature
extraction and texture analysis in many other applications and predominantly used in iris
recognition [29]. The impulse response of a Gabor filter is formed by multiplying a complex
sinusoidal carrier with a Gaussian envelope which can be expressed as g(z,y):

9(z,y) = w(z,y) * s(z,y) (2.11)

where s(x,y) constitutes complex carrier signal and w(z,y) forms the Gaussian envelope,
represented as :
—(2* +9?)
w(z,y) =e o? (2.12)
The complex sinusoidal signal is represented mathematically as:

s(z,y) = o Crluortron) ) (2.13)

with u, and v, representing the frequency of the horizontal and vertical component of
complex sinusoid. The term ) represents the phase shift. The complex carrier signal can be
separated into real and imaginary parts such that :

Re(s(z,y)) = Cos(2m(uox + voy) + 1) (2.14)
Im(s(z,y)) = Sin(2m(uox + voy) + ) (2.15)
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The real and imaginary components are the even symmetric and odd symmetric components.
The Gabor filtered components of the symmetric and asymmetric components are:

—(* +v%)

Gsym (T, y) =€ o? * Cos(2m(uox + voy) + ) (2.16)
—(@*+y?)

Gasym (T, y) =€ o? * Sin(27m (uex 4+ voy) + 1) (2.17)

The 2D Gabor filter over the image domain (z,y) is:

G(z,y) = e @=To/0®)H(y=yo/B)] g =2miluo (1—20)+vo(y=vo)] (2.18)

where (z,,Y,) specify position in the image, («, 8) specify the effective width and length,
(to,v,) specify modulation[29].

The phase information of Gabor filter response is quantized into four levels corresponding
to all quadrants in the complex plane which are represented using two bits of data [29]. The
technique originally proposed by Daugman [29] is widely employed in many commercial
applications and serves as a baseline for iris recognition systems. In this thesis, we employ
the OSIRIS v4.1 implementation of Daugman’s 2D Gabor filtering approach.

2.3.5 Hamming Distance

In the context of traditional information theory, Hamming Distance (HD) is the measure of
differences corresponding to each position of two strings of equal length. Hamming distance
measures the minimum number of substitutions/changes required for converting one string
into another. The concept of string matching can be easily adapted to iris template matching
where iris templates are typically in the form of binary strings.

Daugman [28] proposed to Hamming distance to measure the similarity between two
iris templates which are represented in binary form. Simple boolean Exclusive-OR (XOR)
operator is applied to two iris codes. The degree of disagreement with pair of bits are
detected using XOR operator. Originally proposed Hamming distance measure also uses
noise mask for two iris codes to compensate the errors introduced by eyelashes, eyelids,
specular reflections, or other noise. In this case, the iris mask is combined with the iris code
using a logical AND operation and the result is used to measure the difference [28].

If the two iris code bit vectors are denoted as codeA and codeB with corresponding mask
bit vectors denoted as maskA and maskB, Hamming Distance HD is given as:

| (code A @ codeB) N'maskA N maskB ||

HD =
| maskA NmaskB |

(2.19)

The resulting HD is a fractional measure of dissimilarity with 0 being a perfect match and
higher value corresponding to non-match.

2.4 Performance Metrics

This section presents the commonly used metrics to report the performance of a biometric
system. First, general performance metrics is introduced followed by metrics used in
presentation attack detection.

2.4.1 Performance Metrics in Biometric Authentication System

In a biometric system, the biometric data such as face, iris, fingerprint, periocular region is
collected to enrol a subject into the system. When the subject needs to identified (1 to many)
or subject claims an identity (1 to 1; corresponds to verification), the biometric data collected
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is referred as probe data. In both cases of enrolment and probe data, features from the image
are extracted such that they are used as templates. The templates from both enrolment
sample and probe are used to compare the biometric samples.

If the biometric samples (i.e, templates) are from the same biometric characteristic of
the same biometric data subject, the comparison is deemed to be a mated comparison and
the corresponding comparison result is treated as genuine score. When same biometric
characteristic of the different biometric data subject are compared, the score is treated as
impostor score. Two errors corresponding to genuine and impostor scores are [54]:

1. False-Match-Rate (FMR): The proportion of the completed biometric non-mated
comparison trials that result in a false match.

2. False-Non-Match-Rate (FNMR):The proportion of the completed biometric mated
comparison trials that result in a false non-match.

FMR and FNMR report performance of algorithms employed in the biometric system
under the assumption that there is no failure to acquire (FTA) which is related to the
interaction of the data subject with the biometric capture device.

The Genuine Match Rate (GMR) is a metric, which is derived from FNMR at a certain
FMR [54].

GMR=1—-FNMR (2.20)

Higher values of GMR at a specified FMR imply a superior performance of verification
accuracy for a particular algorithm. It is common practice to vary the operating points
of FMR and present the performance of a system at various operating point in Receiver
Operating Characteristic (ROC) curve.

In this thesis, we focus on verifying if the subject claiming his identity is the same as
the subject enrolled and thus follow the verification protocol. In a verification scenario, the
decision making process consists of comparing a score c¢(Xprove | ;) threshold with © to
output a decision of acceptance or rejection, where xprope represents biometric sample for a
probe subject and ; presents the enrolment samples of subject ¢ in the biometric database.
When the score c is higher than the pre-determined threshold, it is accepted as the biometric
data stemming from probe sample Xprope and is considered to be the same as the one in
enrolment samples of ;.

Common errors in the verification system can be classified in two groups:

1. False Acceptance (FA) - The biometric system accepting the impostor as genuine
subject.

2. False Rejection (FR) - The biometric system rejecting the genuine subject as impostor.

Thus, two metrics can be used to quantify the verification errors considering FTA (results
due to improper interaction of data subjects) is:

1. False Acceptance Rate (FAR) - The false accept rate is the expected proportion of
zero-effort non-genuine transactions that will be incorrectly accepted. A transaction
may consist of one or more non-genuine attempts depending on the decision policy.
The proportion of False Accept (FA) with respect to number of impostor attempts
can be expressed as:

| FA|

FAR(©) = — (2.21)
| impostor attempts |

Taking the FTA into account, FAR can be computed as:

FAR =FMR x (1 — FTA) (2.22)
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2. False Rejection Rate (FRR) - The false reject rate is the proportion of genuine
verification transactions that will be incorrectly denied. A transaction may consist of
one or more genuine attempts depending on the decision policy. The proportion of
False Reject (FR) with respect to number of genuine attempts can be expressed as:

FR
FRR(O) = ‘ | (2.23)
| genuine attempts |
Taking the FTA into account, FRR can be computed as:
FRR=FTA+ FNMRx (1—FTA) (2.24)

where O is the decision threshold.
Half-Total-Error-Rate (HTER) is another metric which is the average of FAR and FRR
as defined Equation 2.25.

_ FAR(©) + FRR(0©)
o 2

Decision threshold © is usually selected such that the FAR is equal to FRR. Indicative
metric at which the FAR equals FRR is commmonly reported as Equal Error Rate (EER).

HTER(©)

(2.25)
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Figure 2.3: Hlustration of ROC curves and DET curves.

The performance of a system represented in EER is derived for a specific operating
point which relates to FAR and FRR being in the same range. Varying the © has a direct
implication on the error rates where if FAR is decreased, FRR is increased and vice versa.
The Detection Error Trade-off (DET) curve presents FAR against the FRR, using axes that
are scaled non-linearly by their standard normal deviates [90]. Figure 2.3 presents a sample
illustration of ROC and DET curves. The ROC curve is shown in semi-log scale in x-axis
to have detailed performance of algorithms at various FMR as illustrated in Figure 2.3(a).

Further, in a scenario evaluation involving the sensor to capture the data,
Failure-To-Capture (FTC) needs to measured which indicates number of failed attempts
to capture the data by sensor. The captured images can result in Failure-To-eXtract
(FTX) biometric data from the captured image. The failure to extract the templates
from the captured biometric data to enrol into gallery/reference database results in
Failure-To-Enrol(FTE). Thus, the error metrics should account for all these while reporting
the performance and thereby present Generalized False Accept Rate (GFAR) along with
Generalized False Reject Rate (GFRR).
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GFAR=FMR x (1 - FTA) x (1 — FTE) (2.26)

GFRR =FTE + (1 — FTE) x FTA+ (1 — FTE) x (1— FTA) x (FNMR)  (2.27)

Thus, an indicative error for the overall biometric system can be reported using GFAR and
GFRR resulting in Generalized Equal Error Rate (GEER) which is defined as a point where
GFAR equals GFRR.

2.4.1.1 Interpreting Performance Metrics

This section summarizes interpretation of performance metrics of a biometric system.

1. The lower EER or GEER indicates a better biometric system.

2. The higher GMR indicates superior performance of biometric system at a particular
FMR.

3. Analogous to GMR, the lower FNMR indicates better performance.

4. In a practical system, lower FAR is expected with minimal/reasonable FRR.

2.4.2 Performance metrics for Presentation Attack Detection

The performance of a stand-alone presentation attack detection algorithm should be
disclosed in terms of Attack Presentation Classification Error Rate (APCER) and Bona fide
Presentation Classification Error Rate (BPCER) [53]. APCER is defined as the proportion
of attack presentations incorrectly classified as normal/bona fide presentations in a specific
scenario while BPCER is defined as the proportion of normal presentations incorrectly
classified as attack presentations in a specific scenario [53].

APCER — | Attack Presentations classified as Bonafide |

2.28
| Total presentations | (2:28)

BPCER — | Bonafide Presentations classified as Attack |

2.29
| Total presentations | (2:29)

Indicatively, performance of a PAD algorithm can be presented as Average-Classification-Error-Rate
(ACER) which is described as the average of APCER and BPCER. ACER is defined by the

Equation 2.30 as:

APCER + BPCE
AceR = AE¢ RJ; CER (2.30)

2.4.2.1 Interpreting PAD Metrics

This section presents the interpretation of PAD metrics in the context of biometric system.
1. A lower ACER indicates reliable performance of a PAD mechanism.

2. Typically, the biometric system should exhibit low APCER with low BPCER.
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Chapter 3

Deep Sparse Filtered Features for Iris
Recognition in Visible Spectrum

Iris recognition in visible spectrum using smartphone cameras is being actively researched
for authentication applications. This chapter discusses two challenges of iris recognition,
one related to segmentation and another related to feature extraction for using iris data
captured in the visible spectrum using smartphone embedded cameras. A new algorithm
to estimate iris diameter for the data captured in unconstrained scenario is proposed in
this chapter to make an existing open source segmentation scheme robust. Additionally,
a new feature extraction technique to obtain robust and discriminant features to achieve
higher verification accuracy is presented. Proposed approaches are validated experimentally
using publicly available databases consisting of images captured from smartphone embedded
cameras in visible spectrum.

3.1 Introduction

The human 4ris is a thin circular muscle structure in the eye, which controls the diameter
and size of the pupil which is a central opening to regulate the amount of light entering the
retina. The observed size of the iris is approximately 12 mm in diameter including pupil.
The bright light constricts the pupil while it dilates in dark illumination condition. The
constriction and dilation of the pupil is primarily controlled by the iris sphincter muscle and
iris dilator muscle as illustrated in the Figure 3.2.
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Figure 3.1: Cross section of iris
Source : Text book of Gray’s Anatomy, 5th Edition
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3. DEEP SPARSE FILTERED FEATURES FOR IRIS RECOGNITION IN VISIBLE SPECTRUM

The components of iris mainly include Fuchs’s crypts, nevi, Wolfflin nodules and
contraction furrows [134]. The iris can be divided primarily into pupillary zone and ciliary
zone as illustrated in Figure 3.1 whose components are well depicted within the picture. The
arrangement of these components in different possible ways result in the unique structure
of any individual’s iris pattern [134]. The complexity, randomness and uniqueness of the
iris structure is also heavily contributed by the blood vessels present in the iris region. The
cross-sectional view illustrated in the Figure 3.2 shows the contribution of vessels to the
structure of complex structure of iris.

e

Figure 3.2: Structural anatomy of iris
Source : Text book of Gray’s Anatomy, 5th Edition

The color of iris adds another dimension for uniqueness of iris appearance. Abundant
presence of the melanocytes and melanin in the anterior layer and stroma makes the iris
appear brown. The lower concentration of such pigmentation causes the iris to appear lighter
in color as it is the case for blue irises [134]. Along with the melanin, collagen fibrils play
a vital role in the appearance of the iris in darker or lighter color. Thus, darker irises have
higher density of collagen along with higher density of the melanin [134].

Human melanin pigment is observed to have a peak absorption at 335nm [79]. It
was thus well advised to employ Near-Infra-Red (NIR) illumination in the wavelength
of 700nm — 900nm to obtain optimal iris texture in the images captured [33, 29, 20].
The reflectance of the iris is observed to be relatively constant over the wavelengths
700nm — 900nm [29]. Further, the NIR light in the range of 780 nm to 840 nm is
highly effective in resolving the iris pattern as the light in this range can be scattered by
collagen fibrils, melanin pigments in the anterior layer and stroma which typically absorb the
illumination in shorter wavelengths corresponding to visible spectrum [29]. Higher density
of fibrils causes the light to be absorbed heavily and lower density absorbs the light partially.
Therefore, using visible spectrum light to capture iris does not result in superior quality
image with textural details as observed in NIR illumination for heavily pigmented iris [29].
Thus, traditional iris biometric systems employ NIR light to illuminate the iris to capture
the unique and random pattern [33, 29].

Iris recognition has been well explored in Near-Infra-Red (NIR) spectrum due to the
robust performance in terms of verification accuracy [29]. The success of iris recognition
in NIR spectrum with impressive error rates in billion comparisons [31] has led to a
set of earlier works to investigate the feasibility of iris recognition in visible spectrum
using regular color capable cameras [107, 57, 139, 137, 16]. Motivated by the rich
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texture available in NIR domain, an earlier work has investigated the visibility of iris
texture information across wide range of spectrum using multi-spectral illumination [17].
It was well demonstrated with a limited dataset that the information from RGB channel
can achieve a good Genuine Accept Rate (GAR) at lower False Accept Rates (FAR)
[17]. Based on the biometric performance demonstrated in earlier works, visible spectrum
iris recognition is gaining importance as an alternative/viable option with considerable
performance [108, 57, 139, 137, 16, 15, 72, 117, 76, 118, 71] owing to fact that a regular
RGB camera can be used to capture the iris image without the necessity of NIR illumination.
Although the visible spectrum iris systems have not been benchmarked yet against the NIR
spectrum iris systems to the size of billion subjects [31], the visible spectrum iris systems are
known to serve good purpose for on-the-move, at-a-distance and unconstrained iris imaging
scenarios[107, 108]. Further, as the camera on smartphones are similar to regular color
capable RGB cameras used for iris recognition, there is a new interest in the direction of
smartphone based authentication using iris biometric characteristics [34, 61, 76].

The advantages of constrained iris acquisition or contact based iris acquisition within a
fixed imaging volume in NIR imaging set-up is that the range of the iris diameter does not
vary largely. This apriori information of a particular range determined with the help of set
of images captured in fixed capture volume results in accurate segmentation in scenarios
involving fixed stand-off distance [29, 80]. In an unconstrained imaging condition such as
iris image captured from smartphones, the range of the iris and pupil diameter vary largely.
Some of the factors influencing the images include the intensity of the illumination (i.e.
incoming light on the eye) which results in dilation and constriction of the pupil. The size
of pupil varies on the basis of amount of light entering the eyes as it cannot be controlled
in an unconstrained outdoor illumination condition and thereby the ratio of iris to pupil
diameter varies which is usually regarded as 0.7 : 0.3 in NIR images [135]. Further, the
optical resolution of the imaging device results in image pattern with pixels which are not
bound to certain limited range as the smartphones provide cameras with different resolution.
The focal length and the distance of the camera from the capture subject also presents
another variable factor which results in non-ideal iris images. Further, different ways of
interaction of subjects with the smartphones while capturing the image and the placement
of camera on smartphones also influence the iris images. Thus, the apriori knowledge of iris
diameter cannot be assured due to factors mentioned above restricting the adaptation of
segmentation schemes designed for NIR iris images. In this chapter, we present an approach
for approximating the iris diameter range for images captured in unconstrained scenarios,
specifically for the data captured from smartphones. The approximated diameter range is
further provided to OSIRIS v4.1 [135] to adapt it for visible spectrum iris recognition. The
proposed approach is experimentally validated as discussed in upcoming sections.

Another key challenge in the visible spectrum iris recognition is the low visibility of
trabecular mesh due to various factors which result in degraded image quality, lesser usable
area from iris due to partial closure of eyes and ambient light reflection [108]. For the
iris images captured in NIR spectrum, features from 2D Gabor wavelets have proven to
perform very well [29] whereas similar performance cannot be expected when the images
are of sub-optimal quality in visible spectrum [107]. In this chapter, we present a new iris
feature extraction method based on deep sparse filtering to obtain robust features. The
features are further experimentally validated for the performance as described in upcoming
sections.

This chapter, therefore, focuses on the aforementioned two aspects of the iris recognition
framework for the data captured using smartphones operating in visible spectrum. In rest of
the chapter, Section 3.2 presents the general pipeline of iris recognition in visible spectrum.
It also discusses two of the many challenges related to segmentation and robust feature
extraction in adapting iris recognition for data captured from smartphone. A new approach
for improving the segmentation accuracy is presented in the same section. Further, a brief
description of databases used in this work are presented in Section 3.4. The databases
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are used to validate improved segmentation approach presented in this chapter. Later, in
the Section 3.3, we present a new feature extraction scheme for extracting robust features
from visible spectrum iris images. The set of experiments and results for demonstrating the
superiority of new feature extraction scheme are presented in Section 3.5. Finally, Section 3.6
discusses the key observations from the experimental validation carried out in this chapter.

3.1.1 Contributions

The key contributions of this chapter can be listed as below:

1. Presents a new approach to adapt the open source segmentation scheme - OSIRIS v4.1
to iris images captured in unconstrained scenario on smartphones operating in visible
spectrum.

2. Presents a new feature extraction scheme to obtain robust and discriminant features
from iris images using deep sparse filtering when the iris texture is not fully utilizable
due to number of factors such as partial closure of eyes, ambient light reflection, shadow
from eye-lashes and low texture visibility.

3. The code corresponding to the newly proposed feature extraction is freely distributed
for non-profitable scientific and academic research purposes [76].

4. Further, this chapter presents a new iris image database of 28 subjects that is collected
during the course of this thesis. The database is distributed freely for the purpose of
non-profitable scientific and academic research.

3.2 Iris Recognition for Data Captured Using Smartphone
Cameras

Most of the iris recognition systems consist of components that are indicated in the Figure 3.3.
Given the eye image captured using any imaging device, it is pre-processed. Preprocessing
involves in localizing the eye region followed by segmenting the iris in which the boundary
between sclera-iris and iris-pupil is determined. Due to the unconstrained nature of the
image capture process and large unrestricted field-of-view, an image acquired from a camera
does not necessarily contain just the eye region but also background. Thus, in order to
avoid segmentation failure of the iris region, it is essential to localize the eye region first.
The iris-sclera and iris-pupil boundary is then localized that corresponds to the texture
of iris. Once the boundaries are well-identified, the iris is unrolled to represent it in
polar-coordinates for the convenience of processing using the approach of Daugman’s rubber
sheet expansion[29].

Iris
Processing

Eye Image
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Normalization

Extraction Score
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Figure 3.3: Block diagram of the general iris recognition framework.

The normalized iris image is processed further to extract the features using approaches
of texture localization such as 2D Gabor features [29] or the variant 1D Log-Gabor
representation [91] among many other approaches. The extracted features can be used as
reference template in an enrolment transaction and the features extracted from an identity
claim transaction (verification) are used as probe template. The distance between the
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3.2 IRIS RECOGNITION FOR DATA CAPTURED USING SMARTPHONE CAMERAS

reference template and probe template is used to determine if the claimed identity is accepted
as genuine subject or rejected as impostor subject.

Further, Figure 3.4 illustrates a simplified version of the components in this chapter
specifically. The eye image is preprocessed to segment the iris and pupil boundary. The
segmented iris region is normalized to a fixed dimension of 512 x 64 pixels which is further
used to extract robust iris features by employing the deep — sparse — filter responses and
the feature vector is generated as outlined in the upcoming sections. The generated feature
vectors are used for comparison with the Sparse Representation Classification (SRC) method
[156, 117].

Iris Processing

Eye Image

Sparse Filtering and
Feature Extraction

conparon
| SRC |y |:> Verification
Score

Figure 3.4: Schematic for deep sparse filtering based iris recognition. The segmented iris
boundary is marked with green color tracing the boundary of pupil in inner circle and
another green color in outer boundary. The texture pattern masked in red corresponds to
noise detected in iris region which can correspond to ambient light reflection and shadow
from eye-lashes.

3.2.1 Estimating Iris Diameter Range to Improve Segmentation

A key to achieve reliable result in terms of recognition accuracy is driven by well-segmented
iris images. Incorrect segmentation eventually results in the degraded recognition accuracy
for the biometric system [80, 108]. As a prior step, it is essential to localize the eye region
alone to obtain better estimation of iris boundaries. Based on the success of Haar cascade
based object detectors, we employ an eye detector trained using Haar Cascade network to
detect the eye region [149]. Figure 3.5(a) illustrates the input image and Figure 3.5(b)
depicts the detected eye region using the employed Haar cascade eye detector.

Haar Cascade Sa'\l;lency Circle
? Eye Detector @ ap Estimation
EE——
Input Eye Detected Eye Saliency Map Diffused Estimated
Image Region of Eye Region Saliency Map Circular Region
(a) (b) () (d) (e)

Figure 3.5: Estimation of approximate radius of iris region using saliency maps.

Following the localization of eye, the iris and pupil boundary are detected as a part
of segmenting iris pattern. Locating the boundary is a challenge as the iris samples are
captured in the visible spectrum in unconstrained manner as discussed in Section 3.1.
OSIRIS v4.1 [135] provides an open source iris recognition toolkit which can be adapted
for visible spectrum iris recognition [65, 71, 117]. However, the OSIRIS v4.1 works with a
known range of iris diameter for successful segmentation [76] which becomes a key aspect
in adapting the OSIRIS v4.1 for segmenting images captured from smartphone embedded
cameras in visible spectrum.
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The problem can be systematically addressed by estimating the iris diameter in coarse
manner to reduce the search space for locating the fine boundary. Recent works have
explored different methods to achieve coarse-localization of the iris boundary [1, 39]. In
a similar paradigm, this chapter exploits supplementary information obtained from saliency
maps of the localized eye image. Saliency maps provide sharp responses along the edges
mimicking the human visual system and thereby helping to trace the iris boundary in a
coarse manner.

Robust approach to estimate the saliency map for a given image in a manner close
to human visual system is by measuring the variation in contrast [55, 25]. When the
image of eye is captured, edge information constituted by the iris-sclera boundary presents
high contrast response corresponding to near iris region boundary. Further, the intensity
change in sclera and iris region gives an indication for the approximate location of the
iris. Thus, we estimate the saliency map to coarsely localize iris from the image of eye
region. The high intensity edge responses along the boundary of iris region provides a rough
area to constrain the search space. Figure 3.5(c) presents the saliency map providing rich
information consisting of strong edges in iris-sclera boundary [25]. The Figure 3.5(c) depicts
the changes in intensity of image across regions.

The change in contrast appears in many regions including the boundary of iris-sclera and
also sclera-skin which occasionally results in a falsely estimated iris region. To mitigate the
falsely estimated iris regions, the saliency map is anisotropically diffused such that the low
contrast changes are minimized and the high contrast regions along with strong boundaries
are retained. Rotation invariant anisotropic diffusion is employed to retain the boundaries
and edges [153]. As compared to other strategies of diffusion, rotation invariant approach
employed in this chapter does not affect the stronger boundaries while merging the regions
with smaller intensity boundaries. Figure 3.5(d) shows the diffused saliency map with strong
edge transitions retained while the local intensity changes are smoothened.

Algorithm 1 Approximating Iris Radius

: Reference image set : Ref
: Detect eye region using Haar cascade eye detector (Refer Figure 3.5(b))
: Extract Saliency map for the detected region. (Refer Figure 3.5(c))
: Perform anisotropic diffusion on the saliency map. (Refer Figure 3.5(d))
: Estimate the circles using the circular Hough transform.
: for <i circles detected (C;p)> do
Obtain corresponding region
Compute 2D correlation coefficient for estimated iris region using
the formula below: B 3
> (Ref = Ref)(Cip — Cip)
CRZ‘ _ m n

\/ (S (e = Fes? ) (SE(Con - Conr?)
where C;p and Ref represent mean values.
: Approx_Radius < (radius — max(CR;)) (Refer Figure 3.5(¢))

[ = B OCI

©

Further, to increase the robustness and mitigate any false detections of iris boundary,
the estimated iris region is correlated to a set of reference iris images from an independent
and disjoint set consisting of 20 cropped iris images obtained from UBIRIS v2 dataset [108].
The reference images from this dataset serve as prototypes for various iris diameters. Each
estimated region is correlated to the prototype set of images to obtain the correlation factor.
The radius of the reference iris image having the highest correlation is used to provide the
approximated iris radius. Figure 3.5(e) presents the located circular region in the image. The
diameter of the approximated iris region is provided to the OSIRIS v4.1 [135] segmentation
technique for further processing and locating the exact iris and pupil boundary. OSIRIS v4.1
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internally performs anisotropic diffusion on high resolution images to estimate the iris-pupil
boundary. The diffused image is used to detect the coarse boundaries and estimates robust
noise mask by employing Viterbi search algorithm [37].

The set of all steps in approximating the iris boundary are outlined in Algorithm 1. The
reference image set is indicated by Ref and the ¢ number of detected circles are indicated
by Cz'D-

With the help of the preprocessing method for locating the coarse iris boundary, the
necessity for apriori knowledge of an iris diameter range for OSIRIS v4.1 is eliminated and
making the OSIRIS segmentation scheme robust. As compared to estimating the iris radius
manually for every single image in unconstrained scenarios under varying resolutions and
focus of different cameras, the technique discussed to approximate the radius has recorded
the segmentation accuracy as given in Table 3.2. Note that the percentage is indicating
the number of cases for which the automated segmentation operated with no error. The
accuracy of the proposed improvement to segmentation technique is computed by manual
inspection. The segmented iris is further normalized using the Daugman’s rubber sheet
model [29]. The normalized iris is then processed to extract the features for verification as
discussed in Section 3.3.

3.3 Feature Extraction Scheme for Iris

This section provides the details of the new feature extraction technique for visible spectrum
iris images using Deep Sparse Filtering approach. A brief summary of sparse filtering is
outlined first and the feature extraction scheme based on deep sparse filtering for robust
iris recognition is discussed in detail later.

3.3.1 Deep Sparse Filtering

Sparse Filtering is a recent paradigm of unsupervised algorithm to learn the number
of specified features which does not explicitly attempt to model the distribution of data
[94]. Sparse filtering optimizes a simple cost function of sparsity using ly — normalized
features. The key aspect in using sparse filtering is that unlike other algorithms in machine
learning, sparse filtering does not necessarily include hyper-parameter tuning and typically
converges to optimal solution easily. The only parameter required in learning sparse filters
is the number of features, as the sparse filters are learnt by optimizing sparsity in feature
distribution. The set of filters learnt can be used to extract features from any image using
simple convolutional approach.

Different number of layers form the building blocks in learning deep sparse filters. In
order to achieve deep sparse filtering, one has to employ more than one layer for learning.
We learn the deep sparse filter using two layers such that layer 1 is trained using 200, 000
random patches of size 16 x 16 pixels from 4212 natural images [145] and the layer 2 is
trained using the output of layer 1. The patches of natural images are first normalized to
obtain the absolute values of feature data. In learning techniques involving multi-layered
approaches, output from one layer is provided as input to the subsequent layer. The number
of layers can be varied to n number of layers for various tasks. The choice of 2 layered
deep sparse filtering through canonical greedy layer-wise approach [10, 47] is to learn more
robust features with low computations [94]. The sparse features obtained as output from the
layer 1 are normalized and provided to layer 2 using the feed-forward network employing the
soft-absolute function provided in Equation 3.1. Generally, the same soft-absolute function
is used across multiple layers [94].

7=\ e+ WFX®)2  where e =107 (3.1)

where fj@ represents the ;' feature value corresponding to rows in the i*" column. X
represents the input vector and W represents the weights in the training network.
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Figure 3.6: Schematic of sparse feature based filter learning

Figure 3.6 presents the schematic processing of the sparse filter learning in this chapter.
As described in Figure 3.6, the image patches are preprocessed and used to train the layer 1
and subsequently layer 2. In this chapter, the sparse filter is trained to have layer 2 with
256 sparse filters of 16 x 16 features. Figure 3.7 illustrates some sample sparse features
obtained in layer 2. We use the sparse features obtained from layer 2 as filters to extract
features from the iris images as explained in the next section.

Figure 3.7: Sample sparse filters obtained from layer 2.

3.3.2 Deep Sparse Filtered Features for Iris Recognition

As the iris pattern is known to consist of unique texture pattern that is randomly formed
[134, 29], we employ deep sparse filters to extract robust and unique features. Robust
feature extraction from the iris texture is important for the performance of an iris biometric
system, particularly when the data is heavily degraded as in the case of visible spectrum
data. The visibility of the clear texture under NIR illumination contributes to obtain
reliable features for recognition using techniques like 2D Gabor wavelets [29]. In the case
of visible spectrum iris recognition on smartphones, due to the unconstrained nature of the
imaging process, the captured iris pattern may be influenced by a number of factors such
as imaging device, the ability to resolve the texture based on the color of iris among and
many other environmental factors causing heavy reflections as discussed earlier [107]. Thus,
it becomes essential to obtain robust features from the captured iris images to perform
reliable recognition. Considering the unconstrained nature of iris data along with the high
dimension of data, deep sparse filters can be successfully used to obtain more meaningful
and reliable features.

The key motivation to extract features using the sparse filters learnt from natural
images is that they contain different kind of information. The varying set of statistical
properties in the natural images cover the broad spectrum relating to different ways human
primary visual cortex receives the information in space and time when seeing an image [145].
The set of basis functions learnt in different approaches on natural images have resulted
in filters similar to Gabor-like filters which are necessary to detect the edge responses in
different direction and orientation [145]. The resulting filters are localized, oriented and
band-pass, resembling the spatial receptive fields of simple cells in the primary visual cortex
that are deemed to obtain features from images [145]. The set of basis functions learnt
using natural images cover broad range of responses as compared to limited Gabor filters
motivating us to employ the natural images to learn sparse representations to obtain highly
varying filter responses. Thus, we use natural images to learn different basis functions using
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sparse filtering which serve as set of independent filters to obtain the response on iris images.
These set of sparse filters are used to extract discriminant and robust features from iris as
detailed below.

In this section, we discuss forming feature vector using deep sparse filters for iris
recognition. Given the segmented iris boundaries, the normalization technique unwraps
the circular iris region into a rectangular image using Daugman’s rubber sheet model [29].
Predominantly used dimensions of normalized iris image vary from 2048 x 1024 pixels to
128 x 32 pixels. The larger dimension of normalized iris image results in higher processing
time while the smallest size may result in loss of many features due to the effect of resizing.
Based on the popular dimension used for iris recognition in many works [29, 122, 135], in
this chapter, we have employed a normalized iris dimension of 512 x 64 pixels. As the
iris image captured in visible spectrum records three different color channels, i.e., red, green
and blue channel, we average the information across color channels.

Further, we have employed 256 filters obtained from the output of layer 2 in the learning
framework as discussed in section 3.3.1 where each of the filters have a dimension of 16 x 16
pixels. When the iris image is convolved with 256 filters of layer 2, a total of 256 response
images are obtained. If the gray level iris image is represented by I and a sparse filter is
represented by S, the sparse filter responses can be denoted as:

R=1xS (3.2)

where * represents the convolution operation. Considering 256 filters employed in this
chapter, we can adjust the Equation 3.2 as:

Ri—1.956 = I * Si—1.256 (3.3)

Sparse filter responses

Iris image

Encoded response image

o i

(c)

Figure 3.8: Sample responses to sparse filters and encoded image

Figure 3.8 illustrates the sample response to eight different sparse filters. Figure 3.8(a)
provides the normalized iris image and Figure 3.8(b) presents eight different responses. Since
processing 256 responses represented by R;—1.25¢ at the feature level becomes tedious, hence
we employ a simple way of binning the data to reduce the process time while still retaining the
features. Each of the response image is thresholded and binarized based on the pixel value.
For a pixel at position (z,y) in the response image, the thresholded value is represented by
T(x,y).

1, if R(z,y) >0

. (3.4)
0, otherwise

T(:E7y) = {

Each of the binarized feature image T'(x,y) are grouped in 8 images (i.e. the binarized
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Figure 3.9: Proposed feature vector construction scheme

feature matrices) to transform into a new feature domain . Considering a single pixel at

a particular position (z,y), a set of binary values from images in the pool consisting of 8
matrices can be used to construct a binary code of 8 bits. Formulating it mathematically,
for a pixel at position (z,y) in a set of 8 binary images, the pooled pixel feature encoded as
gray value is presented as P(zx,y):

P(Z‘,y) = ZTj(xvy) X (Q(j_l)); (35)

j=1

Figure 3.8(c) presents the pooled image formed by 8 responses of sparse filtering. Similarly,
pooling of 256 response images in groups of 8 images result in 32 gray level response images
and are represented by Pj—1.32. The obtained 32 gray level images result in high number
of features and thus cause the overhead for computation at the second level. In order to
avoid this, we employ histogram representation of each of the 32 response images to form a
feature vector. The histogram for a single image is given by :

255
H=Y (P)n forl=12.. 32 (3.6)

m=0

The final feature vector denoted by F' is formed by concatenating the histograms of all the
32 gray level response images. The final feature vector can be represented as F' given by :

F =[Hy, H,,...Hs)] (3.7)

Thus, each of the iris image is represented using 32 x 256 = 8192 features obtained using
the sparse filtering and histogram vector of grouped binary images. Further in this chapter,
we normalize the histogram in order to obtain the final feature vector. Figure 3.9 presents
the proposed iris feature extraction using deep sparse filtering. The final feature vector
is used in conjunction with the sparse representation classification (SRC) [156, 117, 76] to
obtain the comparison scores.

3.3.3 Feature Classification

The obtained features are further classified to obtain comparison scores. In this chapter,
we employ Sparse Representation Classification (SRC) to improve the recognition accuracy

1The number of response images to be binned can be chosen specific to any applications. In this chapter,
the number was set to 8 on the basis of empirical trials. Similar results as comparable to binning size of 8
can be observed when the binning size was varied up-to 12.
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inspired by the success of SRC in other biometric applications [156, 117]. The distinct
features obtained using deep sparse filtering scheme are classified by projecting them
on ly norm — minimization via SPGLy solver based on a spectral gradient projection
[156, 117].

Given the feature vector from deep sparse filtering of the image as in Equation 3.7, we
further enhance the uniqueness of the histogram signature by representing it sparsely. The
classification is performed according to the steps mentioned in Section 2.2.3 in Chapter 2 to
obtain the residual error. The residual errors are treated as dissimilarity scores to classify
them as genuine and imposter scores. These scores are used to compute the final False Match
Rate (FMR) and False Non-Match Rate (FNMR) to obtain the biometric performance.

3.4 Smartphone Iris Databases

Owing to the difficulty in pattern visibility of the iris in visible spectrum light and lower
resolution of cameras on smartphone, there are limited number of works on smartphone based
iris recognition and thereby limited datasets are publicly available for research. Of the few
datasets from smartphones captured specifically for iris recognition, MICHE I dataset [34]
and Visible Spectrum Smartphone Iris (VSSIRIS) database [76] ( collected during the course
of this thesis) are publicly available. Using the two different databases, one can measure the
robustness of various stages in an iris recognition pipeline such as segmentation and feature
extraction. A brief description of the databases are presented in this section.

3.4.1 MICHE I Database

(h)

Figure 3.10: Sample images from the MICHE I database acquired using two different phones.
(a)-(d) correspond to images captured using iPhone 5 and (e)-(h) correspond to images
captured using Samsung Galaxy S4.

MICHE-I [14, 34] provides iris image database collected using two different smartphones -
iPhone 5 and Samsung Galaxy S4. The dataset presents the iris images mostly from southern
European ethnicities. The images are captured using both frontal and rear camera in indoor
and outdoor illumination conditions. MICHE-I consists of images obtained from 75 unique
iris instances with more than 3 samples for each. In this chapter, we employ a subset of 50
iris instances such that every iris instance has at-least 4 samples. Equal number of samples
for each subject is chosen for the experimental protocols discussed later.
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Figure 3.10 presents the sample images from the MICHE-I database. It can be observed
from these examples that the iris images do not correspond to iris images acquired in ideal
conditions and thereby exhibit number of degradation factors. Figure 3.10(a) exhibits impact
of illumination. Figure 3.10(b) illustrates off-angle iris. Figure 3.10(c) and Figure 3.10(d)
exemplify occluded iris. Figure 3.10(e) presents a good quality image. Figure 3.10(f) and (g)
again demonstrate off-angle iris images while Figure 3.10(h) presents completely occluded
iris image.

3.4.2 Visible Spectrum Smartphone Iris (VSSIRIS) Database

VSSIRIS database constructed during the course of this thesis consists of images acquired
from volunteers originating mostly from northern European countries. The VSSIRIS
database has been acquired with two recent phones - iPhone 5S and Nokia Lumia 1020.
The iris images in the VSSIRIS database were captured using the rear camera of both
smartphones. The specifications of the camera and operating environments are provided in
Table 3.1. The database consists of images acquired under the influence of mixed illumination
constituted by artificial indoor illumination and natural daylight illumination. This database
thus provides an opportunity to explore the challenges presented by the mixed illumination
for iris recognition in visible spectrum. The VSSIRIS database consists of iris instances
obtained from 28 subjects with 5 samples for each acquisition.

Nokia Lumia 1020

Figure 3.11: Sample images from the VSSIRIS database acquired using two different phones.

Figure 3.11 depicts sample images from the VSSIRIS iris image database. The VSSIRIS
database consists of images acquired from 28 subjects in a single session which constitutes
to a total of 56 unique iris instances. Each unique iris instance is captured in 5 different
presentations per device in a single session under semi-cooperation from the subjects and
under unconstrained conditions. A total of 560 images are present in the database. The
participants in the VSSIRIS database consist of various nationalities originating from eastern,
northern and southern European countries.
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Table 3.1: Camera parameters of smartphones

Parameters iPhone 5S Nokia Lumia 1020

Resolution 3264 x 2448 Pixels 7712 x 5360 Pixels

Color Representation sRGB sRGB
Bit Depth 24 24

F-Stop f/2.2 /2.2

‘White Balance Auto Auto

Flash No Flash No Flash

Metering Mode Average Average

File Format JPEG JPEG

Focus Auto Auto

Illumination Mixed Illumination = Mixed Illumination

3.5 Experiments & Results

This section reports the experiments and the obtained results for improved segmentation
accuracy comparing with standard OSIRIS v4.1. Further, this section also presents the
verification results using the proposed deep sparse filtering approach on two publicly
available smartphone iris database - MICHE-I [34] and VSSIRIS database [76]. All results
on both databases are reported using the Equal Error Rate (EER), which is a metric defined
as a point for which the False Match Rate (FMR) equals the False Non-Match Rate (FNMR)
[54].

Further, the performance of seven well known feature extraction techniques are presented
along-with. These feature extraction techniques are predominantly used for iris recognition
for images captured in NIR spectrum [29, 91, 84, 78, 120, 121, 117]. We compare the results
of the deep sparse filtering approach against the state-of-art feature extraction techniques.
Most of the mentioned techniques [91, 84, 78, 120, 121] are evaluated on both databases
using the implementation obtained from USIT - University of Salzburg Iris Toolkit v1.0
[122] and OSIRIS v4.1[135].

3.5.1 Evaluation of Improved Segmentation Scheme

This section presents the results of segmentation by estimating the iris diameter range
and compares it against segmentation of standard OSIRIS v4.1 i.e, without iris diameter
estimation. Results are reported on the experiments conducted on MICHE-I [34] and
VSSIRIS databases [76].

Figure 3.12 presents an illustration of the segmentation accuracy when the radius is
estimated as compared to segmentation with OSIRIS v4.1 alone for MICHE-I. Figure 3.12(a)
illustrates the robustness of OSIRIS v4.1 which has resulted in accurate segmentation even
obstruction of hairs. Figure 3.12(b) presents the clear segmentation with both OSIRIS
v4.1 and OSIRIS v4.1 with estimated iris diameter. It can be observed from the image
that approximation of iris diameter has resulted in fine iris boundary localization and good
noise mask. Figure 3.12(c) presents highly pigmented image where the OSIRIS v4.1 works
reasonably well to localize boundaries, however fails to localize the exact boundary. The
same iris is segmented well when the iris diameter is approximated. Figure 3.12(d) depicts
a highly challenging image both in-terms of pigmentation and off-angle iris representation.
The image in the second row is segmented using OSIRIS v4.1, the segmentation has failed
to localize the clear boundary while the bottom row indicates successful segmentation when
the search space for iris boundary is constrained using coarse iris radius estimated using
saliency maps.

The images from each illumination condition corresponding to single smartphone camera
are treated as one subset of database for MICHE-I database following the protocols reported
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Radius
Approximation
+
Segmentation || Segmentation
OSIRIS v4.1 OSIRIS v4.1 Iris Image

Figure 3.12: Illustration of segmentation with the radius approximation as compared to
segmentation with OSIRIS v4.1 alone for MICHE-I database. The segmented iris boundary
is marked with green color tracing the boundary of pupil in inner circle and another green
color in outer boundary. The texture pattern masked in red corresponds to noise detected
in iris region which can correspond to ambient light reflection.
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earlier in our work [76]. A subset consisting of 50 unique iris has been employed in this
chapter to maintain the same number of iris samples in all different acquisition conditions
and provide unbiased comparison. The detailed description of database can be obtained
from Section 3.4.

Table 3.2 lists the obtained improvement in segmentation accuracy as compared to using
OSIRIS v4.1 alone. The accuracy reported in the Table 3.2 is verified using visual inspection
of the segmented images by manually correlating the boundaries of iris and pupil to the
boundaries localized by automated segmentation.

Table 3.2: Segmentation accuracy with the iris diameter approximation for OSIRIS v4.1

Smartphone Ilumination | Camera | Segmentation Accuracy (%)
Database : MICHE-I [34]
Rear 81
Outdoor
Frontal 64
iPhone
Rear 64.5
Indoor
Frontal 76.5
Rear 74.5
Outdoor
Frontal 62
Samsung
Rear 65
Indoor
Frontal 77
Database : VSSIRIS [76]
iPhone 5S Mixed Rear 85
Nokia Lumia 1020 Mixed Rear 78.5

3.5.2 Improvement of Verification Accuracy Due to Improved
Segmentation

To benchmark the impact of the radius approximation for segmentation technique on the
verification performance, we evaluate the verification accuracy and report the Equal Error
Rate (EER). The verification accuracy is obtained using the proposed approach of new
feature extraction based on Deep Sparse Filtering. The Table 3.3 provides the EER of the
segmented iris images using standard OSIRIS v4.1 and OSIRIS v4.1 with approximated
iris diameter for the unconstrained iris images in both the databases employed in this
chapter. Figure 3.13, Figure 3.14 and Figure 3.15 provide the plots of Receiver Operating
Characteristics curves (ROC) for images obtained from different phones. The improvement
in Genuine Match rate at lower False Match Rates (FMR) for the verification performance
indicates the suitability of approximating radius to achieve a robust biometric system in
unconstrained iris acquisition systems.
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Table 3.3: EER(%) with the standard OSIRIS v4.1 system and the improvement due to the
iris diameter estimation.

EER (%)
Smartphone Tlumination | Camera
OSIRIS | Diameter Approximation
v4.1 + OSIRIS v4.1
Database : MICHE-I [34]

Rear 14.62 10.40

Outdoor
Frontal 11.14 6.78

iPhone

Rear 8.35 8.35

Indoor
Frontal 3.74 4.16
Rear 18.86 10.52

Outdoor
Frontal 12.45 10.26

Samsung

Rear 25.06 6.16

Indoor
Frontal 8.40 4.47

Database : VSSIRIS [76]

iPhone 5S Mixed Rear 14.62 10.40
Nokia Lumia 1020 Mixed Rear 7.98 2.01
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Figure 3.13: ROC curves depicting performance with the native OSIRIS segmentation and
the improvement based on radius approximation scheme for VSSIRIS database

Further, the impact of the iris diameter approximation on the verification performance
is presented in Figure 3.13 for the VSSIRIS database. Figure 3.13(a) and Figure
3.13(b) presents the improvement in verification accuracy with the Deep Sparse Filtering
approach|[76] for data captured in Nokia Lumia 1020 and iPhone 5S.
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Figure 3.14: ROC curves depicting performance of improvised segmentation scheme for
Samsung images of MICHE-I subset.

Similarly, Figure 3.14 and Figure 3.15 presents the verification performance for MICHE-I
database. The improvement in the verification can be clearly marked with the large
difference in red and green curves. The verification accuracy can be observed to improve
in all cases of MICHE-I subsets as the green curves are closer to GM R = 100% indicating
higher performance.
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Figure 3.15: ROC curves depicting performance of improvised segmentation scheme for
iPhone 5S images of MICHE-I subset [34].

3.5.3 Evaluation of Deep Sparse Filtering on MICHE-I Database

This section presents the results of proposed feature extraction obtained on the MICHE-I
database and compares it standard state-of-art schemes mentioned above. In the subset of
MICHE-I database employed in this work, each unique iris instance has 4 samples and thus,
we adopt the leave-one-out approach by dividing the data in 3 : 1 ratio with 3 samples as
reference and 1 as probe sample. The minimum score from three comparisons is used as the
comparison score for the pair of probe and reference. The partition is continuously swapped
to make each iris sample reference and probe at different times. Further, the reference
and probe partition is repeatedly changed m times with m = 10 under the leave-one-out
cross-validation strategy. The final results are obtained by averaging the results obtained
from all iterations of the leave-one-out approach. The results thus represent the mean value
of all the 10 different trials taking care of statistical variations.

Table 3.4 provides the EER scores obtained for the images on MICHE-I database [34]. It
can be observed from Table 3.4 that the deep sparse filtering feature extraction technique
performs well on the publicly available database validating the robustness of method. On
average, the obtained gain in performance is around 2% on all different cameras and
illuminations. The obtained error rate in terms of GMR and FMR is presented in the plot
provided by Figure 3.16 and Figure 3.17 for iPhone data in MICHE-I dataset. Similarly, the
obtained error rates is presented in the plots in Figure 3.18 and Figure 3.19 for Samsung
data in MICHE-I dataset.
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Table 3.4: EER (%) obtained for various schemes on MICHE-I database [34]
(* Scores obtained using USIT v1.0 [122]; ® Scores obtained using OSIRIS v4.1 [135] )

EER (%)
Outdoor ’ Indoor

iPhone Samsung iPhone Samsung

Schemes

Rear | Front | Rear | Front | Rear | Front | Rear | Front
2D Gabor [29] ® | 10.41 6.78 | 10.52 | 12.45 | 8.35 3.74 | 6.16 | 8.399

1D Log Gabor [91]* | 24.01 | 21.86 | 20.83 | 21.22 | 13.90 | 17.01 | 17.26 | 18.83

Li Ma [84]* | 29.98 | 22.01 | 20.63 | 20.60 | 12.84 | 17.01 | 18.68 | 17.10

Ko et. al [78]* | 21.78 | 18.11 | 18.05 | 17.70 | 11.29 | 14.58 | 14.68 | 14.06

Rathgeb & Uhl [120]* | 28.12 | 27.43 | 24.39 | 27.30 | 20.83 | 21.05 | 25.68 | 21.13
Rathgeb & Uhl [121]* | 30.39 | 26.76 | 26.04 | 31.09 | 26.31 | 26.84 | 33.17 | 30.43
Raghavendra et al. [117] | 857 | 7.82 | 6.29 | 811 | 0.48 | 2.07 | 418 | 4.23
Deep Sparse Filtering [76] | 6.25 | 4.18 | 2.06 | 6.27 6.25 | 0.02 | 3.96 | 2.50
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Figure 3.16: ROC curves obtained for various schemes applied on the iPhone images from
MICHE-I database (Indoor illumination) [34].
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Figure 3.17: ROC curves obtained for various schemes applied on the iPhone images from
MICHE-I database (Outdoor illumination) [34].

3.5.4 Evaluation of Deep Sparse Filtering on VSSIRIS Database

In this section, we experimentally validate the deep sparse filtering feature extraction
technique on the VSSIRIS database [76] and compare against other state-of-art feature
extraction techniques.
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Figure 3.18: ROC curves obtained for various schemes applied on the Samsung images from

MICHE-I database (Indoor illumination)[34].

Table 3.5: Biometric performance obtained for various schemes on the VSSIRIS database
(* Scores obtained using USIT v1.0 [122]; ® Scores obtained using OSIRIS v4.1 [135] )

Schemes EER (%)
iPhone 5S | Nokia 1020
2D Gabor [29]® 3.62 3.52
1D Log Gabor [91]* 5.73 11.66
Li Ma et al. [84]* 7.89 13.88
Ko et. al [78]* 7.88 11.79
Rathgeb & Uhl [120]* 16.26 24.16
Rathgeb & Uhl [121]* 19.45 27.54
Raghavendra et al. [117] 8.31 10.59
Deep Sparse Filtering [76] 1.62 1.78

Each unique iris instance has 5 samples in VSSIRIS database and thus, this work adopts
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Figure 3.19: ROC curves obtained for various schemes applied on the Samsung images from
MICHE-I database (Outdoor illumination) [34].

the leave-one-out approach by dividing the data in 4 : 1 ratio with 4 samples as reference and
1 other sample as probe. The minimum score from 4 comparisons is used as the comparison
score for the pair of probe and reference. The reference and the probe samples are swapped
continuously such that each of the image is reference in a particular trial. The reference
and probe partition is repeatedly changed m times with m = 10 under the leave-one-out
cross-validation strategy. The final results are obtained by averaging the results obtained
from all iterations. The results obtained represent the averaged value of all the 10 trials
providing statistically meaningful result.

Table 3.5 presents the results of all different schemes on the VSSIRIS database. It can
be observed from the table that the deep sparse filter based feature extraction technique
has outperformed the rest of the state-of-art techniques by providing the best EER of 1.62%
for iPhone 5S images and 1.78% for Nokia images. Figure 3.20 presents the plots of the
obtained GMR at different FMR for various feature extraction schemes.
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Figure 3.20: ROC curves obtained for various schemes applied on the VSSIRIS database

3.5.5 Discussion

The challenges of iris recognition in the visible spectrum stem from many factors such as
unconstrained imaging, low visibility of texture pattern, ambient reflection from external
illumination and non-standard iris-pupil dilation ratio. The verification accuracy can be
influenced by any or all of these factors. A careful inspection of the scores and the
corresponding images indicate the drop in verification performance due to contribution
towards both false matches and false non-matches. Significantly, lower verification is
attributed to false matches and a key factor resulting in high false matches is the low visibility
of unique texture information when the images are captured in unconstrained conditions,
especially for the heavily pigmented iris patterns. The trend of higher false match rates can
be observed in MICHE-I database which consists of southern European ethnicities presenting
mild to heavily pigmented iris patterns as observed in Figure 3.19, Figure 3.18, Figure 3.17
and Figure 3.16. As it happens, the lower EER in VSSIRIS database can be attributed to
mildly pigmented iris which are light in color and thereby providing better texture visibility.
With the evident observations from the set of experiments presented in this chapter, it
can be noted that the iris recognition on smartphones remains a challenge which needs
considerable amount of effort in achieving better imaging sensors that will provide detailed
texture visibility, especially for subjects with higher pigmentation density. Iris pattern as an
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authentication mode from smartphone captured data in visible spectrum can be adapted for
larger population of world with heavily pigmented iris if the images can be captured with
better texture visibility. The problem of obtaining better texture resolution in image needs
considerable research efforts in the future works.

3.6 Conclusions

The rise of iris recognition in visible spectrum has seen growing interest for numerous
applications. Specifically, many recent works have investigated smartphones as a biometric
sensor for iris recognition. The performance of the iris recognition depends on the accuracy
of segmentation taking care of noise via robust masks. The challenge of segmenting iris
images increases for visible spectrum due to unconstrained nature of image capture which
result in strong ambient reflection, shadow of eye lashes and partial closure of the eyes.
Thus, it is essential to devise robust segmentation algorithms specifically tailored for visible
spectrum data in unconstrained capture scenarios.

Further, to adapt the existing segmentation schemes like OSIRIS v4.1 [135] commonly
used for NIR spectrum data, the range of iris diameter needs to be estimated. This
chapter has contributed in improving open source segmentation scheme OSIRIS v4.1 by
eliminating the need of apriori knowledge of iris diameter. The robustness of the OSIRIS
v4.1 segmentation scheme is further enhanced by the presented iris diameter approximation
as demonstrated in this chapter. Although the proposed improvement is specifically tested
on images captured in visible spectrum, the solution can be adapted for images captured in
unconstrained iris capture systems operating in NIR spectrum.

The improvement in segmentation accuracy due to radius approximation has been
evaluated both manually and also in terms of the verification performance on two publicly
available iris databases - MICHE-I [34] and VSSIRIS database [76]. The approximated iris
radius is used as apriori information for standard OSIRIS v4.1 segmentation scheme [135].
The method has resulted in an accuracy of 75% in average with the best performance of
85% accuracy for iPhone 5S images.

Further, the need for robust feature extraction techniques in visible spectrum iris
recognition is demonstrated through a set of experiments using state-of-art techniques on
two public iris datasets. Deep sparse filtering based feature extraction for iris images is
evaluated with respect to the verification performance in this chapter. The feature extraction
has resulted in good accuracy for both the publicly available databases. Obtained results
on VSSIRIS database report an EER of 1.62% for iPhone 5S and EER of 1.78% for Nokia
Lumia 1020 phone. The robustness of the feature extraction technique can also be observed
from the average gain of around 2% on the EER for all different smartphone images over
the state-of-art techniques for MICHE-I database.

As a remark, the need for better imaging ability, robust segmentation approaches and
reliable feature extraction are needed to employ iris recognition to full potential, especially
for heavily pigmented iris patterns. The higher false match rates and false non-match
rates as observed from Figure 3.19, Figure 3.18, Figure 3.17 and Figure 3.16, specially for
the heavily pigmented iris in MICHE-I need to be addressed before this can be adapted
in real-life verification scenarios. Alternatively, innovative imaging techniques should be
designed to illuminate the iris such that the light is scattered back to resolve better texture.
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Chapter 4

Imaging Heavily Pigmented Iris in Visible
Spectrum using White LED

Low visibility of iris texture for the images captured in visible spectrum limits the
employability of iris recognition for large population of subjects with heavily pigmented iris.
This chapter is dedicated to present a new imaging set-up to obtain iris images with good
texture visibility, especially for heavily pigmented iris from smartphone visible spectrum.
The proposed approach is validated by set of experiments and compared against the images
captured in the NIR spectrum for the set of corresponding subjects.

4.1 Introduction

Two specific challenges of iris recognition in visible spectrum arises due to low visibility of
texture and challenges in segmentation due to quality of iris image which are discussed in
Chapter 3. In order to resolve the texture for dark iris, NIR spectrum illumination in the
range of 780 nm to 840 nm is used as the light in this range penetrates melanin and is
scattered by collagen fibrils as discussed in Section 3.1 in Chapter 3.

However, most of the everyday-imaging sensors such as off-the-shelve cameras or
smartphone embedded cameras, do not have inbuilt NIR illumination unit to support the
capture process in iris. Given the interest in using smartphones with embedded cameras
to capture iris images for various biometric applications, the absence of NIR illumination
is limiting factor for heavily pigmented iris. Recent smartphones Microsoft - Nokia 950,
Nokia 950 XL, Fujitsu NX F-04G and Samsung Galaxy Note7 are designed with inbuilt NIR,
illumination for capturing iris data. Although the solution is appealing, it does not allow the
current smartphones (without NIR illumination) to capture iris data. Thus, if one intends
to use visible spectrum light in the range of 380 nm to 720 nm to capture iris patterns, the
success is limited and restricted to only those iris instances that have light colors and that
are captured in a controlled scenario. It is therefore important to address such a problem
of low texture visibility for images captured in visible spectrum to support the increasing
popularity of smartphone based biometrics employing iris recognition[34, 129, 76, 142].

In this chapter, we present an imaging set-up with a white light-emitting-diode (LED)
to obtain iris images with detailed texture visibility [66]. The idea of using LED is to mimic
the flash illumination present in the smartphone cameras and thereby to find alternative
ways of engaging smartphones without NIR illumination in an optimal way. The LED used
in this thesis is highly similar to the flash embedded in the present day smartphones. The
presented prototype captures good quality iris images by placing a white LED inclined at
an acute angle to the iris position. The main advantage of the presented approach is that
it can capture good quality iris samples with minimal additional hardware (like LED) on a
smartphone platform and demonstrating the ability using the flash on the smartphone itself.
A recent smartphone like Oppo N1 ! has the flash LED and camera installed on a rotating
unit which follows a similar paradigm of presented setup. Therefore, the new approach can
be integrated into the smartphones with minimal engineering effort while manufacturing
following the design approach of Oppo N1.

ISpecifications of Oppo N1 can be availed at: http://www.oppo.com/en/smartphone-nl
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We present significance of the imaging set-up by capturing the iris images of heavily
pigmented subjects to create a new database with 62 unique iris instances with 10 samples
each. The database is evaluated using different state-of-art techniques to determine the
applicability of the new imaging set-up. This chapter also presents a benchmark evaluation
of the proposed method with conventional Near-Infra-Red (NIR) images for a subset of
the subjects in the database. Extensive experiments are carried out using five different
well-established iris recognition algorithms and one commercial-of-the-shelf algorithm.

In the rest of this chapter, Section 4.2 presents the iris recognition pipeline with the
imaging set-up based on LED. Section 4.3 provides a detailed description of the database
captured using the imaging setup. Section 4.4 provides the discussion on the experimental
protocols and results. In the Section 4.5, the conclusive remarks and observations are
presented for this chapter.

4.1.1 Contributions

The key contributions of this chapter can be outlined as below:

1. Presents an image capturing setup based on normal white LED mimicking the flash
illumination embedded on the smartphones to capture heavily pigmented iris.

2. Presents extensive experiments to demonstrate the applicability by analysing the
database of images from 62 heavily pigmented unique iris instances captured using
the proposed set-up.

3. Additionally, this chapter presents evaluation of five different iris recognition
algorithms and one commercial-off-the-shelf (COTS) algorithm to render a significance
of LED set-up along with comparative performance analysis on three different
smartphone samples.

4. Also benchmarks the images obtained from LED imaging setup with images from
conventional NIR iris capture setup using commercial iris capture device MorphoTrust
Mobile-Eyes [92].

4.2 Iris Recognition Framework

|
|
|
. . ! . i Feature .
Iris imaging —:* Segmentation —{ Normalization H— Extraction —| Comparison
|

Figure 4.1: Block diagram of the iris recognition framework

Figure 4.1 shows the block diagram of the regular iris recognition framework. After
acquiring the eye image, the iris region is localized from the captured sample. The
localization of the eye is important for two main reasons - (i) The field- of-view of smartphone
camera is generally wider, and hence details from background have to be discarded. (2) The
segmentation errors in localizing the iris boundary can be significantly reduced as the region
is small. Thus, we employ the Haar cascade based eye detector for locating the specific
region of eye [150]. Once the eye is localized, the iris has to be segmented. The details of
each component are given in the section below.
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4.2 IRIS RECOGNITION FRAMEWORK

Camera position

LED Head rest LED

Figure 4.2: Prototype of the visible iris image acquisition setup

4.2.1 Approach for Imaging Heavily Pigmented (Dark) Iris

To capture the iris pattern in the visible spectrum, we employ white LED at an acute angle.
Figure 4.2 illustrates the prototype of the visible iris imaging setup. Placing the light at an
acute angle illuminates the iris such that complete light is not absorbed by human melanin
pigmentation. Due to non-absorption of light, a maximal portion is reflected back resulting
in a visibility of iris structure. Although the iris texture information obtained does not fully
correspond to information obtained in NIR spectrum, iris recognition can still be achieved
with the obtained information as demonstrated later. Further, the placement of LED is
carefully designed to make sure there is no strain for the eyes of the subject while the
texture of iris is well observed. As the white LED is medically accepted for the fact that it
does not impact or damage the vision and moreover, similar white LEDs are also used in
smartphones, we have employed white LED in this chapter to serve two purposes -

1. Study the feasibility of using the LED on smartphone for iris recognition with minimal
engineering effort to place it optimally.

2. Provide an alternative imaging set-up for capturing iris in visible spectrum.

Figure 4.3 provides the detailed illustration of images obtained from three different
smartphones under the presented setup. Along with the images obtained from three different
smartphones, an image of the same eye obtained in the conventional NIR setup is presented.
The key factor to note from the illustration in Figure 4.3 is the visibility of the iris information
obtained due to the set-up. It has to be further noted that, on the left part of the Figure
4.3, the iris pattern is not visible either with or without flash. However, for the samples
in the third column that are captured using LED based approach, the pattern of the iris
becomes visible to a greater degree. It has to be noted that iris texture information obtained
using the proposed approach significantly differs from iris texture information obtained in
NIR spectrum. Indeed, the proposed lightning does improve the visibility of dark eyes but
the melanin still partly hides the texture which would have been fully visible with NIR
lighting. Nonetheless, the tests show the observed texture has enough entropy to be used
for biometrics purposes. Further tests with longer span of time between acquisition sessions
would be required to assess the stability.
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Figure 4.3: Comparison of improved visibility of iris pattern obtained using various smartphones and a conventional NIR capture device as baseline.
It can be observed from the images that the proposed approach provides better texture visibility but does not necessarily correspond to textural
information obtained in NIR spectrum using NIR-MorphoTrust device.
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4.3 DATABASE

4.2.2 Segmentation and Normalization

The captured iris images are segmented prior to processing the texture information. Based
on the proven robustness for segmentation of iris in both NIR domain [135] and also in
the visible spectrum domain [76], in this chapter, OSIRIS V 4.1 [135] is employed. As the
segmentation algorithm is complemented by Viterbi search for robust mask creation, the
iris and pupil boundary are well localized in OSIRIS V 4.1 [135]. In the case of visible
spectrum iris recognition, factors such as non-uniform illumination require a robust noise
mask and OSIRIS v4.1 performs localization of noise to a better degree [135]. Followed by
the segmentation, the iris texture is normalized using Daugman’s rubber sheet expansion
technique [29]. The dimension of a normalized iris image in this chapter is fixed to 512 x 64
pixels.

Mobilelris NIR iphone 5S Nokia Lumia 1020 Samsung active S4

Segmented Image Segmented Image Segmented Image Segmented Image

Normalized Image Normalized Image Normalized Image Normalized Image

Figure 4.4: Illustration of segmentation and normalization of iris images.

4.2.3 Feature extraction and comparison

The features are extracted from the normalized iris images. The texture features are
obtained using five state-of-the-art techniques. We have employed texture feature extraction
based on well-established algorithms - 2D Gabor features [29], 1D Log Gabor features [91],
multichannel spatially filtered features [84], cumulative sum of gray value features [78] and
1D Log Gabor features [91] with sparse representation [76].

In order to compare the feature vector from reference and probe iris, we employ Hamming
Distance (HD) score in comparison subsystem for most of the techniques [29, 91, 78, 84] and
residual scores obtained from comparison of sparse representation of 1D Log Gabor feature
[76].

4.3 Database

In order to evaluate the applicability of the imaging set-up based on LED, a database
has been constructed. The database consists of images obtained from 31 unique subjects
amounting to 62 unique iris instances. Each unique iris instance is captured using three
different smartphone cameras. For each subject, images are captured in 10 different attempts
with a duration of approximately 5-15 minutes between each acquisition. As the LED based
setup is intended to improve the iris texture visibility of dark irises, the data is collected
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4. IMAGING HEAVILY PIGMENTED IRIS IN VISIBLE SPECTRUM USING WHITE LED

from individuals of Eastern ethnicity, who typically exhibit dark iris pattern due to high
melanin pigmentation and higher density of collagen fibrils. Typically, the texture pattern
and trabecular mesh is not visible fully or it is visible to the minimal level with regular
imaging method using the smartphones. Figure 4.5 presents an illustration of the exact
challenge. It can be observed that Figure 4.5(a) captured with smartphone, which has
almost nil texture visibility and Figure 4.5(b) presents the same iris instance captured using
LED based imaging set-up with clear texture visibility. The crypts, furrows and annular
rings in the iris can be observed clearly in the image captured using LED based set-up.

(b)

Figure 4.5: Tllustration of texture visibility with LED based set-up; (a) Iris instance captured
in smartphone demonstrating poor texture visibility; (b) Iris instance with superior texture
visibility when captured using LED based set-up.

Three smartphones are employed in this work - Apple iPhone 5S, Nokia Lumia 1020 and
Samsung Active S4. Each unique eye is captured with all three smartphones. A total of 10
samples are captured for each iris instance with each smartphone and thus a total of 620
images are obtained in one set. The complete overview of a number of iris images in the
database is presented in the Table 4.1. The database consists of 1860 images in total.

Table 4.1: Details of the database for iris recognition in our current work

Smartphone | Subjects | Unique Eyes | Samples | Total images
Apple iPhone 5S 31 62 10 620
Nokia Lumia 1020 31 62 10 620
Samsung Active S4 31 62 10 620
NIR - MorphoTrust
Mobile-Eyes [92] 12 24 10 240

4.3.1 Near Infra Red Database

In order to benchmark the LED based illumination method in the visible spectrum iris
recognition on smartphones, we also use a complementary iris image database acquired
using a conventional Near Infra Red (NIR) iris imaging device MorphoTrust Mobile-Fyes
[92].

A smaller subset of 24 unique iris was acquired based on the willingness of the
participants to participate in both capture processes. Thus, the images are obtained from
subjects corresponding to the volunteers in the visible spectrum iris database obtained using
smartphones. 10 samples were acquired in 10 different attempts with a duration of 5 — 15
minutes between each acquisition. Table 4.1 also provides details on the number of images
present in the NIR database employed in this chapter.
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4.4 Experiments and Results

This section provides the details of the experimental protocol to evaluate the applicability of
images obtained using LED based set up. As described in Section 4.3, the database consists
of two different subsets. The first subset of data stems from the capture of the iris in
the visible spectrum using the LED based setup. The second subset of data originates from
using the standard NIR iris acquisition device. Thus, we have two subsets and corresponding
experiments outlined in this chapter.

4.4.1 Experiments on Visible Spectrum Iris Recognition

In this set of experiments, we evaluate the performance of the iris recognition algorithms for
the iris captured using white LED. As the data is collected using three different smartphones,
we have three different sets of evaluation. Exploiting the availability of 10 samples for each
unique eye instance, we employ one sample as the reference image and the rest of the 9
samples as probe images. We continuously change the reference image 10 times such that
all the images corresponding to one unique eye become reference image at least once. All
scores obtained from the comparison are accumulated to generate the final set of genuine
and impostor scores. For each set of evaluation, we have obtained 2790 genuine scores and
189100 impostor scores for iPhone, Nokia and Samsung data.

4.4.1.1 Results on Visible Spectrum Iris Recognition

Table 4.2 presents the results obtained on the visible spectrum iris dataset acquired using
LED. It can be observed that the verification rate is consistently good when following
the LED based approach. It has to be noted that the iris pattern would not be visible
without using LED for the involved dark eyed capture subjects. Figure 4.5 has provided an
illustrative example of the low texture visibility.

Proposed imaging approach

|

{ SRR I

Figure 4.6: Illustration of iris texture visibility in normalized iris pattern using LED based
approach for sample subjects. Both the images from NIR and visible spectrum capture using
LED approach present good texture visibility but different information.

Figure 4.6 provides a sample illustration of the iris texture visibility using the LED
based setup. It can be noted that the texture is highly visible even for a dark-eyed subject.
For the simplicity of illustration, we have also provided the iris images of the same subject
captured in the NIR domain. Furthermore, each iris is accompanied by the 2D Gabor
features corresponding to one single scale as illustrated in Figure 4.6.
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Table 4.2: LED based iris recognition verification rate
“OSIRIS v4.1 implementation of algorithms fUniversity of Salzburg Iris-Toolkit v1.0
implementation of algorithms

Phone Verification Accuracy
iPhone 5S Nokia Lumia 1020 Samsung Active S4
Feature Extraction GMR (%) EER (%) GMR (%) EER (%) GMR (%) EER (%)
@ FMR=0.01% @ FMR=0.01% @ FMR=0.01%
2D Gabor " [29)] 85.98 3.61 85.8 3.94 78.04 455
Masek & Kovesi T[91] 83.44 4.01 81.57 5.38 66.81 5.71
Ko et al. 1[78] 81.72 4.15 71.57 6.09 63.33 4.54
Ma et al. ‘\[84] 80.35 4.18 67.84 4.53 53.44 5.49
LG-SRC f[91] 85.08 3.54 83.87 3.94 80.03 4.52

The best GMR, of 85.98% is obtained from the data acquired in the LED setup with
iPhone 5S as indicated in the Table 4.2. Further, the GMR of 85.8% and 80.03% are
obtained for Nokia and Samsung respectively, again at the FMR of 0.01% indicating the
robust performance of the LED based setup. It can be correlated to the superior texture
visibility as illustrated in the Figure 4.6.

The analysis of the iris data captured indicates that the LED based setup can be
supported by any of the employed smartphone hardware and can easily be extended to other
smartphones. It is interesting to note that the GMR obtained from different smartphones
under the LED based setup is consistently higher than 80% at FMR = 0.1%, which
indicate the applicability in a real life verification scenario. Figure 4.7 presents the Receiver
Operating Characteristics (ROC) curves for iPhone, Nokia, and Samsung phone. The
consistent performance of the LED based setup can be confirmed at various FMR by
observing the ROC curves.
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4.4.2 Experiments on NIR spectrum iris recognition

As discussed in the earlier section, in order to benchmark the performance of images from
LED based set-up versus a conventional NIR performance, we use a subset of iris images in
the NIR domain corresponding to involved volunteers, that were also enrolled in the visible
spectrum database. Similar to the protocol mentioned earlier, due to the availability of 10
samples per eye instance, we consider one sample as a reference and the rest of 9 samples
as a probe. The reference sample is iteratively swapped such that each sample becomes
reference at least once. All the scores obtained from the comparisons are combined to form
final genuine and impostor scores. The number of genuine and impostor scores generated in
this set of experiments is detailed in the Table 4.3.

Table 4.3: Distribution of genuine and impostor scores in NIR-Visible Spectrum iris database

Number of | Samples | Genuine | Impostor
Phone unique eyes | per eye score score
iPhone 5S 24 10 1080 27600
Nokia Lumia 1020 24 10 1080 27600
Samsung Active S4 24 10 1080 27600
NIR -MorphoTrust
Mobile-Eyes [92] 24 10 1080 27600

4.4.2.1 Results on NIR spectrum iris recognition

The benchmark performance of iris recognition obtained using NIR versus the visible
spectrum using LED based approach for the subset of data as mentioned in Section 4.4.2
is provided in Table 4.3. The corresponding ROC curves are presented in Figure 4.8.
The obtained performance for 24 unique eyes instances in NIR data in terms of GMR is
91.01% at FMR of 0.01% that corresponds to images captured with iPhone 5S. Comparing
the GMR obtained for the same set of data with the NIR device, LED based set-up
indicates an equivalent performance. It can also be observed from the ROC curves that the
obtained GMR is consistently higher than 80% even at lower FMR indicating the superior
or equivalent performance as compared to NIR images.

Table 4.4: Benchmark performance of LED versus NIR dataset. Reported accuracy for
individual feature extraction methods on smartphone differs from results in Table 4.2, as
the dataset is significantly smaller.

“OSIRIS v4.1 implementation of algorithms
TUniversity of Salzburg Iris-Toolkit v1.0 implementation of algorithms

GMR @ specified FMR (%)
Feature Extraction iPhone 5S Nokia Samsung NIR - MorphoTrust
Lumia 1020 Active 54 Mobile-Eyes [92]
FMR=0.01% | EER (%) | FMR=0.01% | EER (%) | FMR=0.01% | EER (%) | FMR=0.01% | EER (%)
2D Gabor *[29] 91.01 2.96 88.33 3.88 86.87 6.15 86.85 2.05
Masek & Kovesi T[91] 84.53 4.62 83.61 5.76 82.56 6.11 52.68 2.15
Ko et al. \\[78] 87.59 4.26 75.74 4.83 83.58 5.15 50.55 12.49
Ma et al. T[Sﬁl] 84.9 4.38 78.05 5.18 67.58 5.43 79.81 1.56
LG-SRC T[91] 85.37 2.96 86.48 3.14 85.89 3.86 67.4 1.3

56



Genuine Match Rate (%)

—2D Gabor

—Masek and Kovesi|

Ko etal.
55 ---Maetal. i
1 - LG-SRC
50 L , , ;
102 107 10° 10’ 10?

False Match Rate (%)
(a) NIR Iris Dataset

g
P |
©
T |
<=
IS ]
©
=
@ 70 7
£
=]
c 651 7
o)
(0] —2D Gabor

60 —Masek and Kovesi|

Ko etal.
55 ---Maetal. i
- LG-SRC
50 . . T
102 107" 10° 10 10?

(c¢) Nokia Iris Dataset

Figure 4.8: ROC curves for various dataset acquired using LED based approach. (a) Benchmark performance obtained using NIR images; (b)-(d)
Performance obtained using LED based approach for various smartphones

False Match Rate (%)

Genuine Match Rate (%)

Genuine Match Rate (%)

80 1

75 1

70+ 1

65 1
—2D Gabor

60 —Masek and Kovesi[|
~--Ko et al.

55 ---Maetal. N
- LG-SRC

50 . . ;

102 107 10° 10° 102
False Match Rate (%)
(b) iPhone Iris Dataset
100 T

80 ]

751 i ]

700 AT 1

65 1
—2D Gabor

60 —Masek and Kovesi[|
~—Ko etal.

55 ---Maetal. i
| G-SRC

50 . . :

102 107 10° 10° 102

False Match Rate (%)

(d) Samsung Iris Dataset

SIINSHY ANV SLNHWIMAIXH ¥



4. IMAGING HEAVILY PIGMENTED IRIS IN VISIBLE SPECTRUM USING WHITE LED

4.4.3 Evaluation of Commercial Iris Recognition System

Most of the iris recognition based authentication system in real-life verification scenarios
employ commercial-off-the-shelf (COTS) algorithms. To measure the applicability of LED
based set-up, we have evaluated VeriEye commercial algorithm [148]. To provide the
comparison with respect to an open-source algorithms, we have retained the experimental
protocols as discussed in previous sections.

VeriEye SDK is highly tuned to work with NIR iris images and has been proven to work
well even in NIST IREX performance evaluation [148]. As the VeriEye SDK fails to extract
the features/template for images obtained using the smartphone in the visible spectrum,
the performance metrics such as EER, FMR and FMNR do not hold good [54]. All the
images for which the template extraction fails must be treated as Failure-to-Enroll (FTE)
as discussed in Chapter 2. As the acquisition of images are continued until the images
of satisfactory quality are obtained, Failure-to-Acquire (FTA) equals to zero. The final
performance is provided in Genuine Match Rate (GMR) and Generalized Equal Error Rate
(GEER) considering the FTA and FTE.

The performance obtained from the VeriEye SDK is provided in the Table 4.5. Significant
FTE can be observed from the Table 4.5 for iPhone data and moderately low amount of FTE
for Nokia and Samsung data. However, the FTE equals to zero for NIR data as VeriEye
successfully extracts template for NIR iris images. Further, from the Table 4.5, it can be
noted that GMR of 91.86% is obtained for data acquired using Nokia Lumia 1020 and GMR
of 100% is observed for NIR data acquired from MorphoEyes. Along the same lines, one
can observe GEER obtained for NIR data is 0% and 6.74% for data obtained using Nokia
smartphone. Figure 4.9 presents the ROC for the COTS evaluation of NIR images and
images acquired using proposed set-up.

Table 4.5: Performance for images captured from NIR sensor and smartphones in visible
spectrum using VeriEye SDK

Sensor / Smartphone FTE(%) GMR (%) GEER (%)
@ FMR = 0.01%
NIR - MorphoTrust Mobile-Eyes 0 100 0
iPhone 58 29.09 78.98 14.15
Nokia Lumia 1020 4.64 91.86 6.74
Samsung Active S4 6.70 89.53 8.46
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Figure 4.9: Performance curves obtained using VeriEye commercial SDK for NIR iris images
and images acquired using proposed setup in visible spectrum
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4.5 CONCLUSIONS

The performance obtained using COTS algorithm supports the applicability of the LED
based imaging set-up for the real-life verification system.

4.5 Conclusions

The concentration of melanin pigments and the density of the collagen fibrils in iris structure
governs the color of the iris. A lower concentration of melanin and lower density of collagen
fibrils result in the light colored eye. A light colored eye can easily be captured in the visible
spectrum as the shorter wavelength light is scattered. However, to image dark colored iris,
NIR has been used as the light in the shorter wavelength range is easily absorbed.

In this chapter, we have explored an imaging set-up specifically deigned to image dark
colored iris using white LED illuminated in a acute angle. The specifications of the LED
used in this chapter is close to the specification of flash illumination used in smartphones
and thereby presented an alternative way to engage the smartphones effectively to capture
iris in visible spectrum, even heavily pigmented iris. Furthermore, to validate the robustness
of the LED based setup for imaging the dark iris, we have employed a database captured
using three new smartphones. The best GMR of 91.01% at FMR = 0.01% obtained for
iPhone data validates the applicability of presented approach in everyday authentication in
low security applications for dark colored iris.

The presented approach provides an alternative to the NIR light on smartphones by
making use of the existing LED flash illumination. The realization of the proposed
illumination needs engineering effort to integrate the flash such that it can illuminate the
iris at an inclined angle in a similar manner to the design of recent smartphone Oppo
N1 as discussed in this chapter. Benchmark performance evaluation of iris recognition
in the visible spectrum using LED based approach versus NIR illumination has indicated
good performance that is comparable to NIR data. The LED based approach of imaging is
promising to adopt in real life verification scenarios for everyday authentication. Further, the
large scale experiments with bigger dataset of images needs to be carried out in future works
of this direction and compared against the NIR database to validate the initial observations
from this chapter.
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Chapter 5

Deep Sparse Time Frequency Features for
Robust Verification of Periocular Images
From Smartphones

The periocular region is used for authentication in the recent days under unconstrained
acquisition in biometrics. This chapter presents a new approach to perform biometric
authentication using periocular region captured in smartphone embedded camera operating
in visible spectrum. A new feature extraction is presented to achieve robust verification
performance and is experimentally validated using three publicly available databases.

5.1 Introduction

The use of iris recognition on smartphones in visible spectrum is limited by number of factors
detailed in the Chapter 3 and Chapter 4 . The low visibility of texture due to multiple
factors plays key role in segmenting iris pattern, which in turn influences the performance
of biometric system. As an alternative, many works [100, 108, 107, 102, 101, 73, 117]
have employed the region around the eye for biometric recognition of an individual with
considerable biometric performance.

The periocular region a.k.a ocular region can be defined as the area of the face that
includes the eyelids, eyelashes, eyebrow, and the skin surrounding the eye [102]. Ocular
characteristics can be obtained either while capturing the face image or the iris image alone
[102, 11]. Many of the earlier works have advocated periocular region as a supplement
information for iris systems [155, 43, 136] or face recognition systems [102]. In the context
of smartphone captured data, it was also shown to supplement /improve the performance in
a multi-modal authentication scenario [129]. Further, in our earlier work [73], periocular
region was used as a stand-alone characteristics on smartphone based authentication
systems operating in a semi-cooperative environment. The usefulness of periocular region
in multi-modal system was also iterated in our works [75, 74]. The rise of interest in
using ocular biometrics in the visible spectrum is partially due to ease of imaging with
a simple RGB camera without additional hardware. Thus, one can use any existing cameras
including cameras embedded on smartphones operating in visible spectrum to capture ocular
characteristics.

In this chapter, we explore periocular region as a stand-alone biometric characteristic
for authentication applications using smartphone captured data in both semi-cooperative
and unconstrained capture conditions. We first present a new feature extraction scheme
based on time-frequency features of deep sparse filtering which we refer hereafter as
Deep Sparse Time Frequency Features (DeSTiFF) and employ it for feature extraction
of periocular images. We evaluate the strengths of the new feature extraction scheme
on publicly available periocular databases captured using smartphones to gauge the
applicability. The features from new scheme are evaluated on both semi-cooperative
and unconstrained data captured from smartphones in visible spectrum. It has to be
noted that the results on the preliminary version of the newly proposed scheme (i.e.,
Deep Sparse Filtering) has been reported on a large scale database (VISOB) in our earlier

61



5. DEEP SPARSE TIME FREQUENCY FEATURES FOR ROBUST VERIFICATION OF
PERIOCULAR IMAGES FROM SMARTPHONES

work [69, 123].1

In the rest of the chapter, Section 5.3.1 presents the newly proposed feature extraction
scheme followed by the Section 5.4 which presents the set of databases employed in this work.
Further, the evaluation and results obtained on the databases are presented in Section 5.5.
Finally, the observations and remarks are detailed in Section 5.6.

5.1.1 Contributions
The main contributions of this chapter are:

1. Presents a new feature extraction technique to obtain robust and discriminant features
from periocular images captured from smartphone embedded camera operating in
visible spectrum.

2. Presents a new periocular database hereafter referred as Visible Spectrum Smartphone
Periocular (ViSPer) database consisting of 152 unique periocular instances collected
using two different smartphones (iPhone 5S & Nokia Lumia 1020) and 100 unique
periocular instances from Samsung S5. The ViSPer database is freely distributed for
the non-profitable research purpose.

3. Presents extensive set of experiments to demonstrate the applicability of proposed
technique through evaluation on publicly available periocular databases along with
the newly captured database from smartphones operating in visible spectrum.

5.2 Framework for Periocular Recognition

Deep Sparse Filtered Collaborative
Time Frequency E> Representation [ Verification
Features Comparison Score

PeriocularImage

Figure 5.1: Illustration of the proposed framework for verification.

Compliant to a general biometric verification system, the enrolment images (captured
from smartphone) are used to extract the features and are stored as templates in the
enrolment database. When the probe image (captured from smartphone) is given, the
features are extracted in a similar manner as for enrolment images. Features from both
enrolment and probe image are compared to make a decision to accept the genuine user
or reject the impostor. The framework for periocular based verification is depicted in the
Figure 5.1.

From the periocular image, DeSTiFF features are extracted using newly proposed
scheme. The features from probe image are compared against the enrolment features using
collaborative representation classifier [163] as detailed in Section 2.2.4 of Chapter 2. The
score obtained from the collaborative representation classification is used to verify or reject
the subject.

LA detailed ROC on the performance obtained on large scale database is presented in the Appendix C.
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5.3 Feature Extraction Schemes for Periocular Images

This section presents the new feature extraction scheme based on Deep Sparse Filtering
followed by time frequency feature localization employed in this chapter to obtain robust
features from ocular images.

5.3.1 Deep Sparse Time Frequency Features (DeSTiFF) for Periocular
Images

As discussed in Section 3.3.1 of Chapter 3, Sparse Filtering can be used to learn a set of
filters to extract features from periocular images. Similar to the approach described earlier
in Section 3.3.1 of Chapter 3, we employ two layered architecture to learn the filters where
the input to learn layer 1 is the patches obtained from natural images [50] and the output
from layer 1 is used to learn the layer 2. The set of filters obtained from the layer 2
are used to obtain the features from the images. Following the discussions in Chapter 3,
Section 3.3.1, layer 1 is optimized using [; norm and the layer 2 using I norm. Based on
the performance obtained in earlier work [76], we limit the framework to learn 256 filters of
size 16 x 16 pixels using natural scene data. We convolve each of the gray level periocular
image with 256 filters learnt.
The responses are further binarized using a simple threshold as given in Equation 5.1.

1, ifs; >0
bi _ , 1L s; > . (51)
0, otherwise

where s; is the convolved response for it" pixel obtained using a deep sparse filter. As the
there are 256 binary responses available for a pixel, it is critical to reduce the dimensionality
while preserving the uniqueness of the responses. Thus, we combine a set of 8 binarized
responses in a sequential format using Equation 5.2.

g(x,y) = g(w,y) + (b(w,y)i) * 207Y) fori=1:8 (5.2)

where g(z,y) is the final encoded response for the pixel at z,y location. Thus the final
encoded gray-level responses amount to 32 images. The set of gray-level response images
can be represented as G € {G1,Gs ...G32} which is a group of 32 images.

As discussed in the earlier chapter 3, the image characteristics change based on different
environmental conditions while capturing the periocular data. The non-uniform illumination
limits the visibility of local texture from periocular region. Further, unconstrained capture
of periocular region results in out-of-focus and motion blurred image as observed commonly.
Thus, the descriptor needs to be blur invariant to obtain the texture information optimally
from periocular image. Techniques like Local Phase Quantization (LPQ) [97] have proposed
to explore the phase information to be invariant to illumination changes. The technique
also advocates the use of low-frequency phase components which are invariant to the
centrally symmetric blur [97]. Motivated by such approach, we obtain the localized frequency
responses to obtain the features in illumination and motion invariant manner.

Thus, in this chapter, we extract localized time and frequency features in large windowed
region by using Short Term Fourier Transform (STFT) with a window of size 60 x 60 based
on empirical trials on the MICHE-I database. Given an image Gy from the set of gray-level
response images where k ranges from 1 — 32, the STFT of the image can be represented
as Fj which is the image resulting to response of frequency components in four different
orientations such that ® = {0°,45°,90°,135°}.

The filter response obtained from each orientation are separated for real and complex
values subsequently. Each of the responses denoted by b is finally encoded to form the final
response image with localized time and frequency as given by F'Rj where ¢ corresponds to
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different orientation angles given by ¢ = {0°,45°,90°,135°}.

4 4

FRy =Re() _(b;) * (2071)) + Im(>_(b;) = (247 1)) (5.3)

i=1 i=1

The image denoted by F R corresponds to the final features which is here after referred
as Deep Sparse Time Frequency Features (DeSTiFF). The features from each of the
32 images result in very large dimension if processed. Thus, each of the response image
is represented as histogram in this chapter. The final DeSTiFF feature vector § for each
image in the response image set k = 1 : 32 is given by:

255

Se=) {FR}; Vhk=1:32 (5.4)
=0

(e)

Figure 5.2: Tllustration of DesTiFF features. (a) Sample periocular image; (b) Deep Sparse
response for a set of 8 filters out of 256 filters; (¢) Grouped response of 8 sequential response
from (b); (d) STFT response for (c); (e) Final histogram features (DeSTiF'F') for set of 8
filters.

Figure 5.2 presents the illustration of all the steps involved in extracting the DeSTiF F
features. Figure 5.2(a) depicts a sample periocular image and Figure 5.2(b) shows a set of 8
responses corresponding to set of 8 filters in deep sparse filters. Figure 5.2(c) is the grouped
response of all the 8 filters shown in Figure 5.2(b). Finally, the time-frequency features are
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extracted using STFT as shown in Figure 5.2(d). The DeSTiFF features correspond to
histogram features depicted in Figure 5.2(e). In the similar fashion, the histogram for all 32
responses are obtained to form the final features as given by Equation 5.4.

5.4 Periocular Databases

The ocular biometric databases collected using the smartphones in visible spectrum are
very limited, amongst which few are publicly available for research. The limited number
of databases are further posed with a problem of limited number of subjects. In this
thesis, we explore three publicly available periocular databases collected using various
smartphones which can be listed as - Visible spectrum Smartphone Periocular (ViSPer)
database, MICHE-I database [34] and VISOB database [69, 112].

5.4.1 Visible Spectrum Smartphone Periocular (ViSPer) Database

Visible spectrum Smartphone Periocular (ViSPer) database was constructed in the due
course of this thesis. It presents a set of periocular images captured using three different
smartphones - iPhone 5S, Nokia Lumia 1020 and Samsung S5. The ocular images are
captured in a mixed illumination environment using the rear camera of the smartphones in
a semi-cooperative manner. A total of 152 unique periocular instances are captured from
76 unique subjects from iPhone 5S and Nokia Lumia 1020 smartphones while 100 unique
periocular instances are captured from Samsung S5. Each unique periocular image has 10
samples captured in different instances. The total distribution of the images in the database
is presented in the Table 5.1.

Table 5.1: Distribution of ViSPer database

) Smartphone

Details iPhone 5S \ Nokia Lumia 1020 \ Samsung Sh

Capture Scenario Mixed Mixed Mixed
Illumination Illumination Illumination
Resolution 12 Mp 41 Mp 16 Mp
Number of subjects 76 76 50
Unique periocular 152 152 100
instances
Samples per unique 10 10 10
periocular instance
] Total images 1520 1520 1000

The ocular images are captured in the uncontrolled environment where the influence
of both the external illumination from sunlight and the illumination from artificial room
light are present. This database is constructed to have the ocular image, which consists of
eye region and the eye-brow region. The sample images from the periocular database are
illustrated in Figure 5.3. The images in the database also present everyday appearances that
include the make-up in the case of female subjects and non-uniform illumination. Further,
as the images correspond to the real life acquisition scenario, the images present various
forms of degradation due to motion blur and blinking of eye.
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iPhone 5S

—————mmmm—————q

Nokia Lumia 1020 |
1

e | |
Samsung S4 1
1

Figure 5.3: Sample images from ViSPer database

It can be observed from Figure 5.3 that the images vary in terms of appearance in different
smartphones and the factors of degradation are not constant across the phones/subjects.

5.4.2 MICHE-I Periocular Database

MICHE-I database provides periocular images collected using two different smartphones
- iPhone 5 and Samsung Galaxy S4 [34]. The images in the database are acquired from
75 subjects using the frontal and rear camera in both indoor and outdoor illumination
conditions. During the indoor acquisition mode various sources of artificial light are
combined with natural light sources while during the outdoor acquisition mode data capture
takes place using natural light only. For each subject only one of the two ocular region
was acquired in this dataset. Each unique periocular instance is captured in four different
sessions resulting in 4 samples. Figure 5.4 presents illustrative images from the MICHE-I
database. Table 5.2 presents the composition of the database detailing the images in all
different conditions.
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Table 5.2: Distribution of MICHE-I Periocular database.
* Not uniform across all subjects

. Smartphone
Details iPhone 5 | Samsung S4

Rear Camera Resolution 8 Mp 13 Mp
Front Camera Resolution 1.2 Mp 2 Mp
Number of subjects 75 75
Unique periocular 75 75
instances

Samples per unique 4* 4*

periocular instance

| Frontal Camera |

Capture scenario Indoor Indoor
Illumination | Hlumination
Total images 300 300
Capture scenario Outdoor Outdoor
Illumination | Hlumination
Total images 300 300
| Rear Camera, |
capture scenario Indoor Indoor
Illumination | Hlumination
Total images 300 300
Capture scenario Outdoor Outdoor
Illumination | Hlumination
Total images 300 300

(h)

Figure 5.4: Sample periocular images from the MICHE-I database acquired using two
different phones. (a)-(d) images captured from iPhone 5 and (e)-(h) images captures from
Samsung S4.
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5.4.3 Visible Light Mobile Ocular Biometric Database (VISOB)
Database

A recent large scale database for ocular images captured using smartphones in visible
spectrum is Visible Light Mobile Ocular Biometric Database (VISOB) [123, 69, 112]. Unlike
other existing databases, this database consists of 580 subjects with variable number of
images in disjoint set of enrolment and probes. The images are collected using three different
smartphones - iPhone 5S, Samsung and Oppo. The key relevance of this database are listed
below:

1. Visible Light Mobile Ocular Biometric Database (VISOB) is the largest ocular
database collected from more than 550 subjects using front facing cameras of three
different mobile devices: Oppo (13 MP), Samsung and iPhone 58S.

2. The key difference of the VISOB database from others is that it presents intra-class
variations due to the characteristics of front facing cameras which reflect everyday
mobile biometric use cases which result in out-of-focus images, occlusions due to
prescription glasses, different illumination conditions, gaze deviations, eye-makeup (i.e.,
eye liner and mascara), specular reflections, and motion blur.

Figure 5.5: Hlustration of sample periocular images from VISOB database.

The degraded quality and challenging nature of the images can be observed from the
Figure 5.5. It can also be noted that the images in VISOB database do not have the eyebrows
in the ocular images. The statistics of the database is provided in the Table 5.3. As it can
be noted from the Table 5.3, there are no fixed number of samples in either enrolment or
probe dataset. The number of images in each set vary greatly and are commendable as
compared to any other existing smartphone ocular databases. The data is collected in three
different illumination conditions which include daylight illumination, dim light illumination
and a mixed illumination scenario in office environment. In each of the different illumination
and under different smartphones, two sets of data corresponding to enrolment and probe
are collected in different session resulting in two disjoint set of data.

Table 5.3: Distribution of VISOB Periocular database
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] Smartphone
Details iPhone 5S ‘ Samsung ‘ Oppo
Resolution 12 Mp 16 Mp 13 Mp
Number of subjects 569 584 584
Unique periocular 1138 1168 1168
instances
Capture scenario Daylight Daylight Daylight
Illumination | Illumination | Illumination
Total images 10373 6495 7896
Capture scenario Dim-Light Dim-Light Dim-Light
Illumination | Hlumination | Illumination
Total images 7314 8476 14979
Capture scenario Office-Light | Office-Light | Office-Light
IMumination | Hlumination | Illumination
Total images 9598 9466 20450
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5.5 Experiments and Results

In this section, we report the set of experiments and results obtained all the three different
periocular databases collected using smartphones as discussed in the prior section 5.4. In the
set of all the experiments reported in this chapter, each of the periocular image is considered
as unique identity (subject) as each of the periocular image exhibits a significant amount
of unique information stemming from an individual. In order to evaluate the performance
of periocular recognition, we present the results with different state-of-art schemes used
in earlier works which includes Binarized Statistical Image Features (BSIF) in the original
version and it’s block based variant (17 x 17 with 12 scales) [64, 71], SIFT and SURF [101].
We have employed RANdom SAmple Consensus (RANSAC) [46, 19] for SIFT and SURF
features while BSIF features are compared using Bhattacharya distance.

DeSTiFF features from periocular region are collaboratively represented for the robust
classification [163]. The collaborative representation based classification is computationally
inexpensive and can easily be used when the number of samples in each class are imbalanced.

All the results of periocular verification in this chapter are presented in terms of Genuine
Match Rate (GMR) at False Match Rate (FMR) of 1072 and as an indicative performance
metric, Equal Error Rate (EER) is also provided.

5.5.1 Experiments on ViSPer Database

This section presents the protocols and results obtained on ViSPer dataset. As discussed
in Section 5.4, ViSPer dataset consists of images captured using three phones - iPhone 58S,
Nokia Lumia 1020 and Samsung S5.

5.5.1.1 Protocols for ViSPer Dataset

Each unique periocular image is captured in ten different sessions from each smartphone.
Of the 10 different captures, 5 different samples corresponding to first 5 captures are treated
as the enrolment set and the remaining 5 samples are considered as the probe set. Thus, in
the experimental protocols, we divide the images in two disjoint sets of reference and probe.
Each subset consists of 5 captured samples. The detailed number of images in each set is
provided in the Table 5.4.

Table 5.4: Database division for experiments on ViSPer dataset

Per Subject Total
Smartphone
Enrolment | Probe Enrolment Probe
(samples x subjects) | (samples x subjects)
Nokia 5 5 5 x 152 = 760 5 x 152 = 760
iPhone 5 5 5 x 152 = 760 5x 152 = 760
Samsung 5 5 x 100 = 500 5 x 100 = 500

5.5.1.2 Results on ViSPer Dataset

Table 5.5 presents the results obtained using various state-of-art methods. It can be observed
from the Table 5.5 that the DeSTiFF features for periocular verification out-performs
other state-of-art algorithms for data stemming from different smartphones. Nonetheless,
the state-of-art methods provide reasonably good performance that are comparable with
presented features employing DeSTiF'F.
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Table 5.5: Verification performance of various algorithms on ViSPer Database

Nokia iPhone Samsung
Algorithm - . -
GMR (%) EER (%) GMR (%) EER (%) GMR (%) EER (%)
@ FMR=0.01% @ FMR=0.01% @ FMR=0.01% EER
SIFT 95.96 2.06 97.72 1.59 97.19 1.83
SURF 98.32 0.70 99.00 0.33 98.12 1.31
BSIF 93.52 2.75 93.44 1.92 93.24 1.43
Block-BSIF 94.84 1.51 96.52 2.84 96.64 1.95
DeSTiFF 99.76 0.01 99.80 0.02 99.78 0.01

Table 5.5 presents the results that indicate 99.8% GMR at FMR = 0.01% with an
EER of 0.01%, 0.02% and 0.01% for images captured from Nokia, iPhone and Samsung
respectively. Further, Fligure 5.6 presents the performance of various algorithms on three
subsets of ViSPer dataset. As discussed earlier, it can be noted that the DeSTiFF features
out-perform the verification accuracy of other algorithms in all three sets corresponding to
images captured from iPhone, Nokia and Samsung.
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Figure 5.6: ROC curves for various algorithms on ViSPer database

5.5.2 Experiments on MICHE-I Periocular Database

This section presents the protocols and the results obtained on MICHE-I database. MICHE-I
dataset consists of the images captures using iPhone and Samsung from both rear and frontal
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camera. It has to be noted that, the images in MICHE-I database are partial face images
of the subjects and thus, we have pre-processed the images to locate the eye-region which
results in periocular region consisting of eye and the eyebrow.

5.5.2.1 Protocols on MICHE-I Periocular Database

In this chapter, we have used the protocols described in our works on this database
[76] where the data is separated based on the placement of camera and the illumination
condition. Thus, iPhone data is divided as ’iPhone-Indoor-Rear’, ’iPhone-Indoor-Frontal’,
‘iPhone-Outdoor-Rear’ and ’iPhone-Outdoor-Frontal.  Likewise, data captured from
Samsung is subdivided into four sets. It has to be noted a subset of 50 users are employed
for the experiments as number of samples across rest of the subjects are not equal. Further,
we divide the dataset to contain three images in the enrolment set and rest of the one image
for probe set. The final division of the dataset for the experiments are provided in Table 5.6.

Table 5.6: Database division for experiments on MICHE-I dataset

o Per Unique Periocular Total
Illumination | Smartphone | Camera
Enrolment Probe Enrolment Probe
Front 3 1 50*3 =150 | 1 x 50 = 50
iPhone
Rear 3 1 50 x 3 =150 | 1 x 50 = 50
Outdoor
Front 3 1 50 x 3 =150 | 1 x 50 = 50
Samsung
Rear 3 1 50 x 3 =150 | 1 x 50 =50
Front 3 1 50 x 3 =150 | 1 x 50 =50
iPhone
Rear 3 1 50 x 3 =150 | 1 x 50 = 50
Indoor
Front 3 1 50 x 3 =150 | 1 x 50 = 50
Samsung
Rear 3 1 50 x 3 =150 | 1 x 50 = 50

5.5.2.2 Results on MICHE-I Periocular Database

Table 5.7 presents the results obtained on all the dataset acquired in the indoor condition
with mixed illumination and Table 5.8 presents the results obtained on the data captured in
outdoor-illumination. It has to be noted that the performance is reported at FM R = 0.1% as
the dataset is limited in size. As the data is relatively challenging as compared to the ViSPer
dataset, a degraded performance in the state-of-art techniques can be observed. The trends
of lower performance is seen in the data captured in both indoor and outdoor illumination
for state-of-art techniques. Further, it can be noted from the Table 5.7 and Table 5.8 that
the proposed feature extraction algorithm (DeSTiFF') has performed consistently well in
all of the different cases. The robustness can be evidently observed from the lowest EER,
(close to 0%) and higher GMR (close to 100%) obtained on all different datasets.

Table 5.7: Verification performance of various algorithms on the data captured in indoor
illumination in MICHE-I periocular dataset

Algorithm iPhone - Outdoor- Front iPhone - Outdoor- Rear | Samsung - Outdoor- Front | Samsung - Outdoor- Rear
GMR (%) EER (%) GMR (%) EER (%) GMR (%) EER (%) GMR (%) EER (%)
@ FMR=0.1% @QFMR=0.1% @ FMR=0.1% @ FMR=0.1%
SIFT 96.69 1.44 92.53 6.14 97.05 2.11 93.36 4.56
SURF 97.04 1.62 95.14 4.27 97.57 1.23 95.10 3.73
BSIF 85.24 5.48 93.58 4.79 97.92 1.05 72.57 7.60
Block-BSIF 88.19 3.41 94.79 4.18 98.26 1.21 84.55 4.38
DeSTiFF 100.00 0.09 100.00 0.00 100.00 0.00 100.00 0.00
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Table 5.8: Verification performance of various algorithms on the data captured in outdoor
illumination in MICHE-I periocular dataset

iPhone - Outdoor- Front iPhone - Outdoor- Rear Samsung - Outdoor- Front | Samsung - Outdoor- Rear
Algorithm
GMR (%) EER (%) GMR (%) EER (%) GMR (%) EER (%) GMR (%) EER (%)
@ FMR=0.1% @ FMR=0.1% @ FMR=0.1% @ FMR=0.1%
SIFT 97.74 1.62 91.08 4.26 96.53 1.85 96.53 2.22
SURF 97.92 1.01 91.43 2.89 95.31 2.46 97.22 2.38
BSIF 97.22 1.04 69.62 5.02 94.44 2.43 94.27 3.61
Block-BSIF 97.05 1.04 82.99 3.54 96.01 1.93 93.06 2.07
DeSTiFF 99.48 0.09 100.00 0.02 100.00 0.00 99.48 0.11
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Figure 5.7: ROC curves for various algorithms on the data captured in indoor illumination
in MICHE-I Periocular Dataset

Figure 5.7 and Figure 5.8 present the ROC of various algorithms on the data captured
in indoor and outdoor illumination respectively. The near accurate results obtained using
DeSTiFF presents a significant improvement over state-of-art methods and it can be clearly
observed from the ROC presented. The EER obtained on all the subsets are close to 0%
and the GMR at FM R = 0.01% equals 100% in majority of the subset data signifying the
robustness of the newly presented approach.
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Figure 5.8: ROC curves for various algorithms on the data captured in outdoor illumination
in MICHE-I Periocular Dataset

5.5.3 Experiments on VISOB Periocular Database

VISOB dataset presents the images captured using three different phones under three
different lighting conditions, which correspond to regular daylight illumination, dim light
illumination and mixed illumination (working/office space illumination). Further, the data
is captured such that the enrolment and probe correspond to disjoint set of images for each
periocular characteristic captured from a subject. The number of samples for each individual
vary across the subsets of the dataset. As discussed in the Section 5.4, VISOB dataset
presents the largest set of periocular data captured from the smartphones. In this section, we
present the experimental results obtained using different techniques on the VISOB dataset.
For the sake of simplicity in presenting the results, we present the verification performance
corresponding to a particular illumination condition across all different phones in one section.
Further, as we treat one periocular characteristics as an unique instance for a subject, we
present the results of left and right periocular characteristics independently. The set of
results obtained using the Deep Sparse Filtering on VISOB dataset has been listed in the
Appendix C for a reference comparison of the performance based on DeSTiF'F.

5.5.3.1 Protocols for VISOB Dataset

The VISOB dataset consists of disjoint set of enrolment and probe samples which was
collected in two different sessions. Thus, in our current work, we use the data stemming from
first session (corresponding to enrolment) for creation of enrolment database and similarly,
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the data collected from second session was used as probe samples. The complete partition
of the dataset is provided in the Table 5.9. As the number of samples captured for each
individual varies, we have presented the total number of images in each set of reference and
probe.

Table 5.9: Database division for experiments on VISOB dataset

Left Right Total
Smartphone | Illumination

Enrolment | Probe | Enrolment | Probe | Enrolment | Probe
Day-Light 2622 2536 2648 2567 5270 5103
iPhone Dim-Light 1865 1763 1897 1789 3762 3552
Office-Light 2522 2561 2523 2292 5045 4553
Day-Light 1582 1587 1648 1678 3230 3265
Samsung Dim-Light 2074 2007 2220 2175 4294 4182
Office-Light 2225 2336 2418 2456 4673 4793
Day-Light 1963 1985 1963 1985 3926 3970
Oppo Dim-Light 3749 3742 3748 3740 7497 7482
Office-Light 5284 4962 5269 4935 10553 9897

5.5.3.2 Preprocessing of VISOB Dataset

As the data is highly challenging and presents number of degradation factors such as low
illumination, in this thesis, we pre-process the images to enhance the quality of images.
We have employed block-based adaptive histogram equalization (CLAHE)[104] with a clip
limit of 4 in a window of size 8 pixels [18] to improve the visibility of texture for the set
of experiments corresponding to STFT and SURF to detect the key-points in a robust
manner.

5.5.3.3 Experiments on data from day light illumination

Table 5.10 presents the results of the verification for images captured using iPhone, Samsung
and Oppo in the daylight illumination. It can be observed that the state-of-art techniques
employing SIFT, SURF and BSIF provide lower verification accuracy as compared to
DeSTiFF. The drop in the performance is drastic as compared to the performance
obtained on MICHE-I and ViSPer database. This drop can be attributed to large size
and unconstrained nature of images in the database. Nonetheless, the DeSTiFF features
provide a reliable performance across all the data captured from different smartphones.
Figure 5.9 presents the ROC depicting the verification performance for data captured using
all three different smartphones. Higher verification performance of DeSTiF F features can
be clearly observed by the significant difference over state-of-art techniques.
From Table 5.10, the following key observations need to be noted:

e GMR of 97.66% and 97.85% is obtained on the data captured (left and right periocular
images respectively) in daylight illumination using iPhone from proposed DeSTiFF
features while best performance from state-of-art results in average of 87% from SIFT
features.

e« GMR of 96.50% and 97.85% is obtained on the data captured from Samsung with
proposed DeSTiFF features while best performance from state-of-art results in
GMR = 75.55% from SIFT features for left periocular images and GM R = 73.63%
from BSIF features for right periocular images .
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¢ Oppo provides lowest performance among all the data captured in daylight illumination
with GMR of 95.94% and 95.00% for left and right periocular images. The
general decrease in state-af-art performance can be seen for Oppo as compared to
same state-of-art technique applied on data captured from other smartphones while
DeSTiFF features still provide significantly higher performance.

e Lowest EER is achieved from DeSTiFF features for all images from different
smartphones.

5.5.3.4 Experiments on data from dim light illumination

Another set of data corresponds to dim light illumination, where the images are acquired in
poor illumination condition. Table 5.11 presents the results corresponding to the captured
images in dim light illumination. It can be noticed by comparing the Table 5.10 and
Table 5.11 that the verification performance further decreases for state-of-art techniques for
the dim light images as compared to daylight illuminated images. The performance obtained
using DeSTiFF features have performed well under such poor illumination conditions.
Figure 5.9 presents the ROC depicting the verification performance for data captured using
all three different smartphones. Higher verification performance of DeSTiFF features
can be observed which is significantly higher than state-of-art techniques as depicted in
Figure 5.10.
From Table 5.11, the following key observations need to be noted:

e GMR of 97.15% and 96.90% is obtained on the left and right periocular data
respectively in dim light illumination using iPhone from proposed DeSTiFF features
while best performance from state-of-art results in GMR of 75.13% and 72.85% from
SIFT features.

¢« GMR of 96.50% and 97.85% is obtained on the data captured from Samsung with
proposed DeSTiFF features while best performance from state-of-art results in
GMR = 64.40% from bock based BSIF features for left periocular images and
GMR = 66.45% from BSIF features for right periocular images .

o Oppo provides a performance of GMR = AA% and GM R = BB% for left and right
periocular images. The data captured from the Oppo results in lower GMR as against
data from iPhone and Samsung.

o EER is observed to be lowest from DeSTiF'F features across the images from different
smartphones.

5.5.3.5 Experiments on data from office light illumination

Apart from regular illumination conditions, this section describes the results obtained when
the periocular images are captured under office illumination condition. The illumination
under such a scenario can be from pure artificial illumination or from a mixture of
artificial illumination and natural illumination from daylight (commonly entering from
windows/transparent walls with glass). Table 5.12 presents the results obtained from
different state-of-art techniques and DeSTiF'F features. Under the general comparison with
the performance obtained from the data captured in day light, the verification accuracy has
decreased in this illumination. The significance of the DeSTiFF features is exemplified
by the robust performance even under difficult illumination proving the applicability of
DeSTiFF features for many applications. The robust performance can further be observed
from ROC presented in Figure 5.11 which depicts the clear margin of separation from
state-of-art techniques.
Table 5.11 presents the key observations for data captured in office light illumination:
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e GMR of 95.85% and 95.78% is obtained on the left and right periocular data

respectively in office light illumination using iPhone from proposed DeSTiF F' features
while best performance from state-of-art results in GMR of 75.13% and 72.85% from
SIFT features.

GMR of 96.50% and 97.85% is obtained on the data captured from Samsung with
proposed DeSTiFF features while best performance from state-of-art results in
GMR = 64.40% from bock based BSIF features for left periocular images and
GMR = 66.45% from BSIF features for right periocular images .

Oppo provides lowest performance among all the data captured in daylight illumination
with GMR of 89.24% and 90.45% for left and right periocular images. The data
captured from the Oppo results in lower GMR as against data from iPhone and
Samsung under the office illumination conditions.
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Table 5.10: Verification performance of various algorithms on the data captured in daylight illumination in VISOB Periocular Dataset

iPhone - Left iPhone - Right Samsung -Left Samsung - Right Oppo -Left Oppo - Right
Algorithm
GMR (%) EER (%) GMR (%) EER (%) GMR (%) EER (%) GMR (%) EER (%) GMR (%) EER (%) GMR (%) EER (%)
@ FMR=0.01% @ FMR=0.01% @ FMR=0.01% @ FMR=0.01% @ FMR=0.01% @ FMR=0.01%

SIFT 87.48 7.30 86.91 5.66 75.55 7.56 67.07 11.30 48.99 15.82 48.13 14.81
SURF 76.13 8.11 77.26 7.65 73.01 10.30 69.86 12.94 29.79 17.42 30.76 17.51
BSIF 62.01 9.48 60.59 9.56 62.88 8.62 65.24 7.98 51.50 22.02 49.74 21.37
Block-BSIF 70.50 8.77 70.81 8.76 70.46 8.43 73.63 7.09 58.90 12.13 58.00 13.54
DeSTiFF 97.66 0.76 97.85 0.72 96.50 0.91 97.85 0.64 95.94 1.09 95.00 1.40

Table 5.11: Verification performance of various algorithms on the data captured in dim light illumination in VISOB Periocular Dataset

iPhone - Left iPhone - Right Samsung -Left Samsung - Right Oppo -Left Oppo - Right
Algorithm
GMR (%) EER (%) GMR (%) EER (%) GMR (%) EER (%) GMR (%) EER (%) GMR (%) EER (%) GMR (%) EER (%)
@ FMR=0.01% @ FMR=0.01% @ FMR=0.01% @ FMR=0.01% @ FMR=0.01% @ FMR=0.01%

SIFT 75.13 8.30 72.85 9.11 54.21 12.54 37.66 11.79 47.13 12.13 50.62 10.51
SURF 49.20 18.61 51.47 18.50 40.65 21.22 38.95 21.28 37.75 18.18 38.44 16.39
BSIF 64.36 8.87 64.78 8.82 60.84 9.24 65.57 6.74 57.64 16.86 56.18 17.06
Block-BSIF 64.16 7.07 65.60 7.37 64.40 6.89 66.45 6.71 67.65 7.72 64.74 8.40
DeSTiFF 97.15 0.48 96.90 0.80 98.17 0.65 98.69 0.75 97.50 1.14 98.13 1.06
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Table 5.12: Verification performance of various algorithms on the data captured in mixed (office) illumination in VISOB Periocular Dataset

iPhone - Left iPhone - Right Samsung -Left Samsung - Right Oppo -Left Oppo - Right
Algorithm
GMR (%) EER (%) GMR (%) EER (%) GMR (%) EER (%) GMR (%) EER (%) GMR (%) EER (%) GMR (%) EER (%)
@ FMR=0.01% @ FMR=0.01% @ FMR=0.01% @ FMR=0.01% @ FMR=0.01% @ FMR=0.01%

SIFT 67.60 10.16 68.78 10.53 25.77 19.32 26.65 20.34 45.61 16.22 45.55 18.37
SURF 50.69 16.55 55.76 16.11 31.43 21.82 32.13 21.30 34.14 20.75 33.10 23.34
BSIF 46.56 11.59 48.41 11.25 41.46 12.94 46.46 12.27 37.90 22.10 35.67 27.82
Block-BSIF 57.67 10.45 59.78 10.20 47.85 13.40 52.47 11.05 41.95 24.33 40.48 28.12
DeSTiFF 95.85 1.41 95.78 1.45 93.53 2.42 95.17 1.95 89.24 3.58 90.45 4.51
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Figure 5.9: ROC curves for various algorithms on the data captured in daylight illumination
in VISOB Periocular Dataset
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Figure 5.11: ROC curves for various algorithms on the data captured in office illumination
in VISOB Periocular Dataset

5.5.4 Discussion

This section presents an analysis for the experimental results discussed in the previous
section. As it can be deduced from the results presented in Tables (Table 5.5, Table 5.7,
Table 5.8, Table 5.10, Table 5.11, Table 5.12), the verification accuracy decreases generally
when the data is not ideal as in the case of adverse illuminations or poor illumination for
state-of-art schemes. DeSTiFF features have performed consistently well on all different
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databases, even when the data is heavily degraded as in the case of VISOB dataset.

In the case of MICHE-I, the images are captured in unconstrained manner and the
same applies for the VISOB database. However, the key difference in VISOB and other
datasets employed in this work, is that VISOB data is captured in highly challenging
illumination. The challenging illumination condition impacts the verification accuracy
and the trend can be validated by the observed low performance for VISOB dataset,
when state-of-art algorithms are employed. Although, pre-processing techniques including
block-based CLAHE are employed for VISOB database to enhance the periocular image, the
preliminary observation suggests that the challenging illumination degrades the verification
performance. A possible future work in this direction should investigate the impact of
illumination, especially for the unconstrained periocular verification.

The significance of DeSTiFF features stem from two aspects that include
multi-representation of periocular image using set of deep sparse filters and the localization
of time and frequency features. Coupled with such reliable features and collaborative
representation, DeSTiFF features present a promising direction for the path forward in
periocular recognition for smartphone captured data.

5.6 Conclusion

The problems of iris recognition in visible spectrum has lead to explore alternative
characteristics around the eye region. Periocular region, which includes the region around
eye along-with eyelids, folds formed by eyelids and shape of eye has been well explored to
supplement the lower performance of iris recognition in visible spectrum. In this chapter,
we have explored periocular characteristics as a stand-alone characteristics for verification
in visible spectrum.

Further, we have systematically demonstrated the applicability of periocular
characteristics for the smartphone based verification scenario using the periocular data
captured in various conditions. The experiments carried out on two public databases
and our new periocular database (ViSPer) have indicated the applicability of state-of-art
techniques in periocular recognition to smartphone data. However, it was demonstrated
that the performance of state-of-art techniques degrades due to low quality and complex
nature of data emerging from poor illumination and unconstrained nature of data capture.
A new feature extraction based on deep sparse filtering and localization of time-frequency
features are presented in this chapter in conjunction with collaborative representation.
The newly presented features DeSTiFF have consistently proven to perform well under
challenging conditions on all publicly available databases. The feature representation has
not only demonstrated the robustness on smaller dataset, but also on large scale data as in
VISOB database.

A preliminary observation from the set of experiments on VISOB database indicates the
necessity of eyebrows for good accuracy. However, a detailed study needs to confirm the
preliminary observations signifying the importance of eyebrows for periocular recognition.
Another important observation from this chapter is the need to study the influence of
illumination. The images captured in poor illumination have resulted in lower verification
performance as compared to images captured in well illuminated images. A future work
in this direction needs to investigate on pre-processing algorithms such that the current
state-of-art algorithms can be well exploited to suit the state-of-art periocular verification
systems.
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Chapter 6

Presentation Attack Detection for Ocular
Biometrics on Smartphones

Biometric systems are vulnerable towards the presentation attacks at capture level. In
this chapter, three new mechanisms of presentation attack detection are presented. The
techniques are validated using the set of experiments on the publicly available ocular
databases designed to address presentation attacks.

6.1 Introduction

International Standardisation at ISO/IEC defines Presentation Attack as "Presentation of
an artefact or human characteristic to the biometric capture subsystem in a fashion that
could interfere with the intended policy of the biometric system” [52]. Generalizing from the
ISO definition of presentation attacks, the biometric systems operating via smartphones as
data capture unit can be considered vulnerable to the presentation attacks at capture level
for various biometric characteristics [103, 131, 68, 67]. The biometric systems are presented
with the artefacts to gain access to secure system projecting it as a normal or bona fide
presentation. Without apriori knowledge, the biometric system compares it against the
enrolled samples and authenticates the user based on the obtained comparison score. If the
artefact of the genuine enrollee in the database is presented to the sensor, the probability of
getting access into the system is very high as the biometric sample enrolled closely resembles
the artefact sample.

It is essential to have robust attack detection mechanisms in a biometric system. The
threat of presentation attack should not be compromised for the sake of providing usability
of biometric system with ease on smartphones. The vulnerability of such biometric systems
working with the data captured in the smartphones are well illustrated in the earlier works
[103, 131, 68, 67]. The key aspect for such attack stems from the fact that biometric data is
captured in an unsupervised manner when any individual uses smartphone for secure access
authentications such as banking applications. As the face data can be easily obtained by
any impostor from different sources such as social media [26], it can be used to attack the
smartphones operating as biometric capture device. Inherently, the face region presents
the ocular characteristics which can again be used to attack ocular biometric systems.
Alternatively, the videos and images from the social media can be replayed on the electronic
display units to attack the biometric capture devices such as smartphones. In extreme cases,
when the biometric systems employ centralized storage to maintain the biometric data, the
impostors can gain access to biometric samples when the storage unit is compromised. Thus,
the original enrolment data can itself be used to attack the capture devices of biometric data
[144, 115, 110, 5, 6, 87, 164].

The presentation attacks span across many different modes which range from low cost
printed artefacts to near-original quality replay attacks through high quality electronic
display screens. On generalizing different ways to carry presentation attacks for smartphone
based biometric systems, we can classify them as print-attack and electronic-screen-attacks
(26, 40, 41, 42]. Another form of presentation attacks can emerge from subjects wearing
textured contact lens where the texture corresponds to actual iris pattern under normal

83



6. PRESENTATION ATTACK DETECTION FOR OCULAR BIOMETRICS ON SMARTPHONES

presentation of genuine subjects[114, 159]. The high level classification of commonly
encountered presentation attacks in the hierarchy is listed as below:
e Print attacks

— Low-quality printed attacks
— High-quality printed attacks

¢ Electronic screen attacks

— Still image attacks
— Video replay attacks

Any biometric system can be attacked with any or all different attack modes
mentioned above. The ocular biometric systems, operating in visible spectrum via
smartphones/regular-cameras have been challenged using simple low cost printed artefacts
[68, 131, 67]. MobILive 2014 (Mobile Iris Liveness Detection Competition) [131] was
specifically designed to address presentation attacks using printed images. Smartphone
based biometric systems can also operate by capturing the video of biometric characteristics.
Many biometric systems which employ video based authentication have been robustly
built to detect the liveness of the subject for print attacks by analyzing the motion
[5, 6, 87, 164]. To attack the video based biometric systems, the artefact video can be
replayed using any electronic screen enabled devices such as tablets, smartphones, display
monitors [12, 68, 67, 70].

The problem of presentation attack has been well addressed in Near-Infra-Red and
regular (RGB) iris imaging devices operating in visible spectrum for the print attacks
[99, 42, 30, 45, 41, 81, 49, 160, 27, 68, 67]. The print attacks are successfully detected
by quantifying the quality artefacts of image and ocular features of the presented image
[99, 42, 138].
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Figure 6.1: General architecture of a ocular/iris biometric system with incorporated PAD
module.
*Note - The block enclosed in the dashed blue line indicates a conventional verification
scheme.

Figure 6.1 illustrates the general architecture of ocular/iris biometric system with
integrated presentation attack detection module. Typical ocular(aka periocular) and/or
iris biometric system involves all of the components enclosed in dashed-blue line where an
image is captured, ocular region is localized following the feature extraction from iris and/or
periocular region and compared against the samples present in the enrolment database to
verify or reject the identity. The systems can be attacked by presenting artefact samples
which can compromise the security level of the system. Thus, it is essential to introduce a
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Presentation Attack Detection (PAD) module, which verifies the liveness of presented ocular
and/or iris characteristics.

In this chapter, presentation attacks and presentation attack detection modes for ocular
(periocular) biometrics on smartphones are discussed from two perspectives for the data
captured from smartphones operating in visible spectrum. In the first place, we demonstrate
the vulnerability of the ocular systems towards presentation attacks. With the motivation
of addressing the presentation attacks for ocular biometric systems operating in visible
spectrum, we explore various techniques based on motion and textural features for image
and video presentation attack detection in ocular biometric system.

In the rest of the chapter, we discuss the available databases in Section 6.2 for ocular
biometrics on smartphones designed specifically for presentation attack detection. In the
Section 6.3, we present the vulnerability of the biometric systems towards the possible
attacks of known types. The obtained results with various presentation attack detection
techniques are given in the Section 6.4. Finally, in Section 6.5, we discuss major summary
of presentation attack detection techniques for ocular biometrics on smartphones along with
the notable remarks.

6.1.1 Contributions
The key contributions from this chapter can be summarized as:

1. A detailed analysis of video based presentation attack detection for iris/ocular
recognition on smartphones in the visible spectrum with experiments on relatively large
video iris database acquired using two different smartphones in the visible spectrum.
The database consists of 152 unique iris patterns obtained from 76 subjects which was
collected during the course of this thesis and is distributed freely for research work.

2. Presents two algorithms based on micro-texture features and one motion based
approach for detecting video presentation attacks on smartphone systems.

3. The code for the proposed approaches of presentation attack detection based on
texture features are distributed freely for non-profitable research purpose to promote
reproducible research.

6.2 Presentation Attack Databases

This section provides a summary of the available ocular databases captured using
smartphones specifically designed for presentation attacks captured using smartphones. The
two publicly available ocular databases are presented, which provide two different attack
artefacts - image based attacks (either electronic or printed attacks) and video based attacks
to surpass the biometric system. Whereas MoblLive 2014 Database concentrates on the
print attack, Presentation Attack Video Iris Database (PAVID) collected during the course
of this thesis focuses on video presentation attacks in video based authentication scenarios,
specifically using an electronic screen.

6.2.1 MoblILive 2014 Database

The MoblLive 2014 dataset was released in conjunction with the 15 Mobile Iris Liveness
Detection Competition (MoblLive) organized in the context of IJCB2014 [131, 130].
MoblLive 2014 dataset consists of images from 100 volunteers collected using Asus EeePad
Transformer tablet. Four ocular samples were used to capture each eye corresponding to
each subject resulting in 800 live ocular images in the dataset.

The artefact dataset of MobILive 2014 Database, also referred as MobBIOfake database
[131] consists of artefact images collected from 100 subjects. Each of the live ocular image
is printed using a color printer and reacquired using the Asus EeePad Transformer tablet.
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(a) Live samples

3

(b) Artefact/Spoof samples

Figure 6.2: Sample images from MoblLive 2014 dataset; (a) Sample images from
normal/live(bona fide presentation (b) Artefact or attack images corresponding to normal
images in (a)

Table 6.1: Composition of MoblLive 2014 Dataset

Bona Fide Presentations Attack Presentations

Number of subjects 100 100
Unique eye instances 200 200
Samples per eye 4 4

Total images 800 800

Thus, the dataset comprises of 1600 samples of which 800 are live samples and rest of 800
are artefact samples. The artefact samples were obtained from printed images of the original
ones captured with the same handheld device and in similar conditions. Table 6.1 presents
the composition of the MobiLIve2014 dataset. Figure 6.2 presents the sample images from
the MoblILive 2014 Database. The Figure 6.2(a) presents the images corresponding to normal
images while the Figure 6.2 (b) presents the artefact samples corresponding to the images
in Figure 6.2(a).

6.2.2 Presentation Attack Video Iris Database (PAVID)

Another database with smartphone ocular images designed to address presentation attack
detection is the Presentation Attack Video Iris Database (PAVID) collected during this thesis
[68, 67]. This database is constructed to explore video based presentation attacks on the
ocular biometric systems in smartphones operating in visible spectrum [68, 67]. The PAVID
database consists of 2 parts which correspond to bona fide and attack presentation videos of
the iris/ocular characteristic. The live or bona fide presentation videos are the recordings of
the ocular characteristics and the artefact videos are the recordings of video replays. Unlike
most of the other databases in ocular biometrics, PAVID database is specifically tailored to
address video based attacks.

Video based ocular biometric systems can be considered superior to image based system
as there are per transaction attempt number of frames available. With higher number of
frames available, the decision module can employ decisions on the entire video, individual
frames or aggregated frames using independent classifier or ensemble methods. Thus, in this
chapter, we discuss on two independent approaches of detecting presentation attacks for the
PAVID database:
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1. Motion based aggregate decision module for a number of 25 frames from the video.

2. Frame based independent decision along with the majority voting for a number of 25
frames from the video.

In both cases, we employ the PAVID database with two independent and disjoint subsets
of real and artefact dataset as discussed in the upcoming section.

6.2.2.1 PAVID - Real Iris Video Database

PAVID is a relatively large-scale iris video database acquired using two smartphones
operating in visible spectrum. The significance of the PAVID database lies in three folds:

o Provides video iris database collected using smartphones in visible spectrum.

e Provides a database with relatively higher number of subjects.
76 subjects & 152 unique ocular instances.

« Provides presentation attack database to assess the robustness of the PAD techniques.

Table 6.2: Distribution of bona fide iris video database in PAVID

Smartphone
Nokia Lumia 1020 iPhone 5S
Number of subjects 76 76
Unique eye instances 152 152
Enrolment video 152 152
Probe Video 152 152

PAVID database [67, 68] consists of videos captured from 152 unique eye instances from
76 subjects using two new smartphones - Nokia Lumia 1020 and iPhone 5S. The total
distribution of iris videos is presented in the Table 6.2. Each unique eye instance is captured
in two different sessions that correspond to enrolment and verification. In each of the sessions,
a video of duration 1 — 3 seconds is acquired for each subject. The captured eye videos are
processed such that at least 25 frames are obtained between the blinks. The video frames
further are used to localize the eye region using the Haar cascade based eye detector [150].
This is essential to remove the background captured due to the larger field of view of the
camera. The located boundary of eye region from the first frame is propagated across other
frames in the video to localize the eye region. Finally, these videos for each subject are
used as the enrolment videos. In a similar manner, the ocular/iris video is obtained for
a verification session. Figure 6.3 presents the sample frames of the normal access videos
captured using the iPhone 5S and Nokia Lumia 1020 along with corresponding artefacts for
each phone.

6.2.2.2 PAVID - Artefact Iris Video Database

The database also consists of an artefact subset which has videos of iris captured using
two smartphones. However, the videos are obtained from the electronic screen of devices
which are capable of playing high quality /near-original quality videos. To simulate realistic
attacks in a verification scenario,the artefact database is constructed under the assumption
that the video from the enrolment database is available to the impostor. In this scenario,
the impostor can use the enrolment video to generate the printed iris artefacts or replay the
iris video. However, when the biometric system employs video based authentication, one
has to design the attacks using video based approaches. Going by such an argument, the
artefact database is created by replaying the iris video on the high-quality display enabled
iPad and presenting it to smartphones (i.e., the biometric sensor in this case). The replay
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| B

Live Sample — iPhone Artefact of live sample from  Artefact of live sample from
iPhone captured in iPhone iPhone captured in Nokia

Live Sample — Nokia Artefact of live sample from  Artefact of live sample from
Nokia captured in iPhone Nokia captured in Nokia

Figure 6.3: Sample frames from ocular videos from PAVID dataset; The top row indicates
the live (bona fide) sample captured from iPhone along with the artefact samples (replayed
using iPad) captured from iPhone and Nokia correspondingly. The bottom row indicates
the live sample captured from Nokia along with the artefact samples (replayed using iPad)
captured from iPhone and Nokia correspondingly.

attack database consists of 4 different attack subsets such that the enrolment videos obtained
from iPhone replayed to iPhone and also to Nokia. Similarly, the enrolment videos obtained
from Nokia are replayed to Nokia and iPhone as well. Under each replay attack subset, a
total of 152 iris videos are present, which make a total of 608 artefact iris videos in total in
the PAVID database. Table 6.3 provides an overview of the different subsets in the PAVID
database.

Table 6.3: Composition of PAVID artefact database

Source obtained from | Capture smartphone / Sensor Attacked | Number of videos

iPhone 152
iPhone

Nokia 152

iPhone 152
Nokia

Nokia 152

6.3 Vulnerability of Ocular Biometric Systems Towards
Presentation Attacks

In order to make the ocular/iris biometric systems robust against presentation attacks, the
first step is to assess the vulnerability of the system towards these attacks. The performance
of a biometric system is measured using the False Accept Rate (FAR) versus the False Reject
Rate (FRR) [54]. Compliant to a general system, the vulnerability towards presentation
attacks can be evaluated by presenting artefact samples and measuring the FAR-FRR using

88
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ATTACKS

a specific baseline system. Vulnerability of the MoblLive 2014 dataset is directly implied in
the competition - 15 Mobile Iris Liveness Detection Competition (MoblLive) in the context
of IJCB2014 [131, 130].

6.3.1 Vulnerability Analysis with PAVID

This section discusses the vulnerability biometric system operating with ocular
characteristics using artefacts from PAVID. To present the simplistic operations, a sample
frame from the probe video is compared against the reference frame in the enrolment
database. The baseline performance with normal iris videos and the baseline performance
of a system, when iris videos are used for attacking the sensor of the system is analysed
in this section. Such an analysis is based on a trivial idea of measuring the genuine and
impostor scores under normal presentation. Furthermore, it comprises of measuring the
genuine and impostor scores when the artefacts are used to attack the sensor. The genuine
score is obtained by comparing the reference frame from enrolment video with all the frames
from probe video. These scores are used to obtain the Detection Error Trade-off (DET)
curves of the system. To simplify the number of comparisons, we consider one frame from
iris video of enrolment as the reference image and 25 frames from probe video as the probe
samples. A similar approach is used to compute the genuine and impostor scores when
the replay attack video is used. In this work, the baseline system is evaluated using Local
Binary Pattern [96] feature extractor and Sparse Reconstruction Classifier [117, 68, 76] on
the periocular characteristics.
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Figure 6.4: Baseline scores and performance of the systems employing iPhone 5S and Nokia
Lumia 1020 as capture sensors

As indicated in the Figure 6.4, the baseline provides an Equal Error Rate (EER) close to
8% for iPhone 5S while the EER is around 2% for Nokia Lumia 1020 which are represented in
green curves in Figure 6.4(a) and Figure 6.4(b). Further, the artefact samples are presented
to the baseline system and the FAR-FRR is measured, which is indicated in the red curve
in the Figure 6.4. As it can be noted from the Figure 6.4, the artefacts are accepted
by the system to a greater extent, which results in EER of around 10% for iPhone 5S
while it results at 5% EER for Nokia Lumia 1020. The EER obtained from the artefact
presentation competes closely with the normal bona fide presentations and thereby indicates
the vulnerability of the biometric system.
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Figure 6.5: (a) Score distributions for genuine, impostor and presentation attack iris videos
for iPhone 5S (b) Score distributions for genuine, impostor and presentation attack iris
videos for Nokia 1020

Alternatively, the vulnerability of the system can be demonstrated using the distribution
of the genuine and impostor scores when both the live/bona fide and artefact biometric
samples are presented to the biometric system. Figure 6.5 presents the genuine and impostor
scores for iPhone 5S and Nokia Lumia 1020. It can be observed from the Figure 6.5 that
there is a significant overlap of the genuine scores for bona fide presentation and artefact
presentation. The overlap indicates high vulnerability of the ocular system towards video
attacks and re-iterates the need for robust techniques to detect the presentation attacks.

6.4 Presentation Attack Detection Techniques

Presentation attack detection techniques can be broadly classified on the basis of image
or video attacks. The image based biometric systems use single images for classifying the
presentation as attack or bona fide presentation. In case of video based biometric system, the
techniques can rely upon single frame or multiple frames within the video. In the upcoming
section, the techniques based on multi-frame (video) strategy are discussed and subsequently
single frame (image) based techniques are discussed.

6.4.1 Algorithm 1: Video Based Scheme for Presentation Attack
Detection

Earlier studies on videos based presentation attacks for face biometrics have presented PAD
modules, where the video is decomposed into several frames and the decision is made using
individual frames [5, 6, 87, 164]. A recent work has devised a method to differentiate the
motion characteristics under normal presentation of subject and motion characteristics under
presentation attack using Eulerian Video Magnification [12].

In this section, we discuss an approach of presentation attack detection leveraging the
frames from entire video using a similar approach. As the video based ocular biometric
system can be attacked using electronic screens, it is intuitive to employ the frequency
based approaches to detect the additional frequency of the electronic display and different
motion characteristics. Specifically, the ocular video is decomposed using Fourier Transform
to obtain the phase and magnitude component. The phase component of the ocular video
is magnified to emphasize the variations in phase using modified EVM. The magnification
amplifies the phase component in video which is further analysed to make the decision. The
specific details involved in deciding the ocular video as presentation attack video or bona
fide presentation is discussed in the upcoming sections.
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6.4.1.1 Modified Eulerian Video Magnification for PAD

Eulerian Video Magnification (EVM) can magnify the temporal variations in videos by
decomposing it spatially and applying temporal filter [157]. In the case of presentation
attacks from an electronic screen, the replayed video presents different information that can
be attributed to the display frequency of electronic screen. However, such information is
very subtle and is hard to detect. If such information is magnified using linear magnification
approaches in the spatial domain, the resulting videos contain larger amount of noises[151]

An alternative approach is to employ phase information to determine the presentation
attacks. Phase based approaches provide robust performance, which are not sensitive to
noises as in the case of amplitude based approaches [98]. The intuition in using the phase
information is to detect the additional frequency emitted when the video is played from an
electronic screen.

Inspired by the success of EVM in various cases to magnify the motion [157, 151], in this
chapter, we have adopted a modified version of EVM to enhance the small variations in phase
component of video frame. The modified version of EVM uses the phase information as input.
The video frame is decomposed using Fourier transform to obtain the phase information
which is further fed to the EVM. The decomposed phase information is spatially filtered
using Laplacian pyramids and temporally filtered using the Butterworth lowpass filter to
magnify the variations in phase of each frame in the video. The enhanced phase variation
in the video is used to estimate the liveness of subject as normal presentation or attack
presentation. The algorithm devised to detect the presentation attack is presented in detail
in the section below.

6.4.1.2 Estimation of Liveness Score for PAD

Given the phase magnified video consisting of N number of frames obtained using modified
EVM, we perform a series of operations to detect the presentation attack. Since, performing
computations on each of the frame is relatively expensive in terms of memory and speed,
each frame is downscaled to a smaller size. We have downscaled the frames to a size of
100 x 100 pixels based on the experimental trials on the development database. The
magnified phase variation of each frame is normalized to have the values in the range of
0 to 1. Let F be the magnified phase variation of frame obtained from the EVM, then j*
normalized frame NorF'(j) is given by:

F(j) —min(F(j))
maz(F (7)) — min(F(j))

NorF(j) = where j=1: N (6.1)

The normalized frame is further divided into non-overlapping blocks of specific size,
br x by as shown in Figure 6.6. We have employed a block size of 20 x 20 in this
chapter based on the experimental trials on the development database. This results in &
number of blocks and thus, each frame results in & = 25 blocks in our work. The normalized
phase information of the block is further referred as normalized block phase variation and
is represented as NorF B(j);, corresponding to 5 frame.
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To effectively identify the presentation attack, a sliding window approach with 6 frames
is employed, out of which 5 previous frames are used for making a decision on the present
frame. The sliding window is propagated until 30 frames by incrementing one frame at a
time. The sliding window is used to detect the rate of the change in the phase with respect
to time. The size of the window was chosen based on the experimental trials conducted on
development database. As illustrated in Figure 6.6, for any given current j** normalized
frame (NorF(j)), differential phase variation for a block k is computed using 5 previous
frames NorF(j — 1) to NorF(j — 5). For a particular block k, the differential phase
information with respect to 5 previous frames is given by:

The final differential phase variation for a particular block in a frame j is obtained by
determining the maximum of all the computed differences given by Equation 6.2.

DPI(j)x = maz{DPI(j — 5)g,--- DPI(j — 1)}

6.3
for k=1,2,---25 (6:3)

The cumulative phase information, C'PI is obtained for the entire frame j by summing all
differential phase information across all the blocks b in the frame j.

k
CPI(j) =Y _ DPI(j). (6.4)

The cumulative phase information given by Equation 6.4 is computed in a similar manner
for all the frames by employing the sliding window with 6 frames as described earlier.

In order to have the obtained score mapped to fixed interval values, the cumulative phase
information is further normalized to a value between 0.5 to 1. The normalized cumulative
phase information is used to determine the presentation attack. If the obtained value is
above the threshold, the video is classified as a presentation attack. For a set of obtained
CPI corresponding to a particular frame j, we apply single sided logistic or sigmoid function
to obtain normalized C'PI represented as NCPI:

1

NCPIG) = =t

(6.5)
The normalized cumulative phase information (NCPI) is compared against a threshold

value indicated by Th = 0.7 to obtain the liveness decision LD for a particular frame j. The

threshold value of 0.7 is obtained from the empirical trials on development database.

1, if NCPI(j) < Th

. (6.6)
0, otherwise

LD(j) = {

The frames with LD = 1 are classified as bona fide presentation or live subjects and
frames with other values are classified as the presentation attacks videos. The obtained
liveness decision at various frames can be used to decide on the presentation category as
bona fide presentation or attack presentation.
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6.4.1.3 Experiments and Results on Video based PAD

The video based PAD scheme is evaluated on the PAVID dataset (31 subject subset) with
iris/ocular videos captured in visible spectrum using smartphones. A subset of the database
is employed to evaluate the video based PAD. The subset of the database consists of 62
unique live iris video and 62 unique attack iris videos from two different smartphones. Under
the assumption that presentation attack videos can be obtained from various sources, the
attack videos are recaptured from live iris videos obtained from iPhone 5S and Nokia Lumia
1020. The bona fide/live videos are replayed on the high quality display device to attack
the biometric system employing either iPhone 5S or Nokia Lumia 1020. The attacks thus
presents a scenario where live video is obtained from a particular smartphone, say iPhone
5S, and the video from the same smartphone is used to attack the system by presenting
it. An alternative case is where the live iris video and spoof iris video correspond to videos
originating from different smartphones. The second case gains importance in the light of
the fact that people tend to change the smartphones quite often due to availability of better
features, reduced cost and limited shelf life. In order to assess the robustness of proposed
system, we consider both situations and propose two different protocols to evaluate the
proposed PAD scheme.

Protocol 1

In the protocol 1, the biometric system is attacked by the videos originating from same
smartphone. In accordance to this protocol, the biometric system employing iPhone 5S is
challenged by the attack videos by replaying the videos from iPhone 5S. In terms of similar
arguments, the system employing Nokia Lumia 1020 are attacked using the replay videos of
Nokia Lumia 1020. This protocol takes care of the attacks based on the same sensors. Since
the live video and presentation attack video originating from the same sensor are highly
identical in terms of quality, this protocol intends to gauge the robustness of the technique
in identifying highly identical artefacts.

Protocol 2

Under the assumption that the impostor can use an iris video obtained using different
smartphone to attack the smartphone based visible spectrum ocular/iris biometric system,
we propose to evaluate a situation where the attack videos and reference videos originate from
different smartphones. Thus, in a system employing iPhone 5S as the biometric sensor, the
attack video corresponding to Nokia Lumia 1020 is replayed and vice-versa. This protocol
evaluates the reliability of the proposed technique to address the cross sensor presentation
attacks in smartphone based visible spectrum iris recognition.

6.4.1.4 Results on video based PAD

All the results related to the video based presentation attack detection have been presented in
terms of Attack Presentation Classification Error Rate (APCER) and Bonafide Presentation
Classification Error Rate (BPCER) [53] as discussed in the Chapter 2. The results are also
presented in terms of Average-Classification-Error-Rate (ACER) which is described as the
average of APCER and BPCER. ACER is defined by the Equation 6.7 as:

ACER — APC’ER—;BPCER (6.7)

Based on the empirical trials on development database, a fixed threshold of Th = 0.7
is used to obtain the liveness decision. The technique is able to achieve an ACER of 0%.
The obtained threshold on development database is well suited for the decision after frame
number 11. The same threshold when applied on the testing database, we obtain the
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ACER = 0% indicating general applicability of proposed scheme for presentation attack
detection on video based smartphone iris/ocular recognition in visible spectrum.
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Figure 6.7: Liveness score for iPhone data.

The Table 6.4 presents various ACER obtained on testing database when different frames
starting from 6 to 11 are considered with a threshold of Th = 0.7. The results are indicated
from frame number 6 as the frames 1 to 5 are used to make the first decision at frame 6.
From the obtained results, the best possible and reliable frame for making a decision is
frame number 11 which provides ACER of 0% for all cases. The determined liveness score
is observed to be constant after 11*" frame from the experiments. It can be observed from
Figure 6.7 that the liveness score obtained using the proposed scheme is robust after frame
number 11 with Th = 0.7 for reference iris videos captured from iPhone 5S and presentation
attack videos are obtained by replaying videos from iPhone 5S on iPad.
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Table 6.4: Presentation classification error rates with a Normalized Cumulative Phase Information (NCPI) threshold of 0.7.
*Note: Frame number 1 to 5 are used to make the decision on frame number 6 in the proposed approach.

Classification Error Rate (%)

Reference Video | Attack Video Frame 6 Frame 7 Frame 8 Frame 9 Frame 10 Frame 11
APCER | BPCER | ACER | APCER | BPCER | ACER | APCER | BPCER | ACER | APCER | BPCER | ACER | APCER | BPCER | ACER | APCER | BPCER | ACER
Nokia Nokia 100.00 100.00 | 100.00 100.00 98.07 99.04 100.00 75.00 87.50 50.00 19.23 34.62 3.85 0.00 1.92 0.00 0.00 0.00
iPhone 100.00 100.00 | 100.00 100.00 96.23 | 98.12 100.00 73.60 | 86.80 51.92 18.48 | 35.20 0.00 0.00 0.00 0.00 0.00 0.00
iPhone iPhone 100.00 98.07 99.04 100.00 92.31 96.15 100.00 78.85 89.42 55.76 13.46 34.61 0.00 0.00 0.00 0.00 0.00 0.00
Nokia 100.00 97.40 98.70 100.00 89.70 94.85 100.00 73.62 86.81 51.92 17.30 34.61 1.92 0.00 0.96 0.00 0.00 0.00
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6.4.2 Frame/Image based Presentation Attack Detection

Another class of presentation attacks are based on the images or single frames of video. The
attacks are mainly designed to target the biometric systems by presenting single image for
the entire duration of probe data acquisition. Thus, it is essential to devise robust attack
detection techniques to handle artefacts presented in the form of image. In this chapter,
we present two PAD mechanisms, a.k.a, spoof attack detection algorithms to handle such
image based attacks via electronic screens.

6.4.2.1 Algorithm 2: Laplacian Pyramid Decomposed Frequency Response
Features

In this section, we present an approach to address the presentation attacks for ocular
biometrics on smartphones that leverages on the features from space and frequency domain
in Laplacian space [67]. The Laplacian Pyramid Frequency Response (LPFR) feature [67]
used for PAD algorithm is depicted in the Figure 6.8. Given the image/video of the subject
under verification scenario, we first decompose each image/frames into Laplacian pyramids
of multiple scales. Each of the resulting images at the specific scale is used to obtain a
Short Term Fourier Transform (STFT) response at four different orientations. The response
corresponding to 4 different orientation is encoded as a single response image, and the
features are obtained by taking the histogram as described in this section. The features
are used to classify the presentation category as bona fide or attack presentation using a
SVM classifier. The motivation and intuition behind the proposed technique are thoroughly
discussed in this section.
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Figure 6.8: Presentation attack detection based on Laplacian Pyramid Frequency Response
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Laplacian Pyramids

Laplacian pyramid decomposition of the image was initially developed with the idea of
encoding the image using local operators at many scales with identical basis functions
[21]. The significance of the Laplacian pyramid decomposition comes from the fact that
the elements of an image are localized both in space and frequency domain. Further, the
Laplacian pyramid can be used effectively to represent images as a series of band-pass
filtered images that are sampled successively at sparser representations [21]. Although, the
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frequency content of the image is well localized using Laplacian Pyramids, the orientation
information of each frequency content is not obtained.

Given an image I, a set of Gaussian pyramid images can be represented using {G;} for !
levels and the levels correspond to lower resolution with each level in the range 1 to . With
the progression of each layer, the high frequency edge details are removed and low frequency
components are retained. The lowest component of Gaussian pyramid G corresponds to the
original image I and the G is the downsampled version of Gy_; which is twice the width
and height of G. Similarly, Laplacian pyramid represents the images at different levels [
with different scale spaces. Each scale space corresponds to multiple frequency bands. An
image in a particular level k is the difference between the Gaussian pyramid image of level
k and level k + 1 which can be defined as:

L, = Gy, — upsample(Gr41) (6.8)

Upsampling of image involves doubling the size of the image in each dimension using a
smoothing kernel. The image in the top-most part of the pyramid corresponds to a minute
version of the original image I.

Algorithm for PAD

In the case of any natural image or video frames, there exists a substantial amount of
edge information which contributes to the frequency information of that image or frame
[133]. However, when the same images are printed using low/high-resolution printers
or when the same images are displayed on an electronic screen, the images present
frequency information which is different from the original frequency distribution of the image.
This additional frequency information is inherently present in the artefacts generated by
printing the live samples or replaying the live samples in the context of biometric samples.
Intuitively, localizing this frequency makes the separation of normal presentation versus
attack presentation. In order to localize this frequency, we employ Laplacian pyramids
at 5 different scales with binomial filter kernel of size 9. It has to be noted that various
kernels with different size were evaluated and the size of the kernel was fixed based on
the empirical trials conducted on the development database. We have also explored the
Steerable Pyramid and Gaussian pyramid decomposition which resulted in similar but lower
accuracy as compared to Laplacian pyramid decomposition.

Laplacian pyramid decomposition separates the lower and higher frequency in
well-defined components. We have employed a scale of n = 5 in this work. The difference
of the obtained low pass and high pass filter at each scale is used to localize the frequency
information further by analyzing STFT response corresponding to four different orientations
o = {0°,45°,90°,135°}.

If an image at a particular scale s of the Laplacian pyramid is represented by I, we obtain
the STFT response of the image. The STFT of the image at scale s, which is represented by
F; is the image resulting to response of frequency components in four different orientations
such that ® = {0°,45°,90°,135°}. The filter response obtained from each orientation are
separated for real and complex values subsequently. Each of the responses denoted by b
is finally encoded to form the final response map as given by F'Rg; where ¢ corresponds to
different orientation angles given by ® = {0°,45°,90°,135°}.

4 4

FR, =Re(}>_(b:) * (2071)) + Im(D _(b:)  (2171)) (6.9)

i=1 i=1

The feature vector F'V, of the image at a particular scale s is formed by obtaining the
histogram of the response map at scale FR;.

255

FV,=> {FR.}i (6.10)
1=0
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NNy s

fferent scales corresponding to (a)

(¢) Decomposed Laplacian pyramids for replay frame corresponding to live frame
shown in (a) at different scales ( Scale 1 to 5 from left to right)

Figure 6.9: Decomposition of images into Laplacian pyramids of scale 5 and corresponding
STFT response maps in each scale. [*Note: Images from all scales are resized to uniform
size for the purpose of illustration only].

The final feature vector for the frame or image is formed by concatenating the feature vectors
of images from scale 1 to n and orientation ® = {0°,45°,90°,135°}. The final feature vector
F'Vy can be represented as :

FVy = {FVie1 o=00, FVs=1,0=45°,

FVi1,0=000, FViz1 a=1350,

ooy FVep =00, F Vo, o—450,
EVien@=90°, FVsmn a=135°} (6.11)

The final feature vector given by Equation 6.11 is used to represent the image for
classification purposes. Figure 6.9 presents the Laplacian pyramid decomposition at five
different scales and its corresponding STFT response maps. Figure 6.9(a) presents a
multi-scale Laplacian pyramid images for a sample frame from live video and Figure 6.9(b)
presents the corresponding STEFT response map of live frame at different scales. Figure
6.9(c) and Figure 6.9(d) illustrate the Laplacian pyramid and STFT response map of replay
attack video frame. It can be observed from the figure that subtle changes in the frequency
information along various orientations of the frame of replay attack video can be highly
enhanced at different scales in STFT response maps.
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6.4.2.2 Algorithm 3: Laplacian Pyramid Color Adaptive Quantized Hybrid
Patterns

A key feature observed in the visible spectrum imaging devices is the ability to capture the
color information inherently. The color information can significantly differ from real (bona
fide) presentation to attack presentation when captured using the cameras which can record
color intensity. Thus, we have explored color based texture descriptors in Laplacian space
for classifying the presentation attack samples from bonafide samples which is termed as
Laplacian Decomposed Color Adaptive Hybrid Pattern (LCAHP).

Predominantly used class of descriptors- Local binary patterns (LBP) [4] have gained
great success in texture classification and the texture encoding schemes have been explored
for presentation attack detection [6, 86, 87]. One deficiency in LBP schemes is that it is
not robust against the noise as the scheme itself relies on encoding spatial structure based
only on local information which is sensitive to noise. LBP also employs fixed quantization
thresholds which add to sensitivity of noise in capturing robust texture information.

Recently proposed class of descriptors, Adaptive Hybrid Pattern (AHP) addresses
the sensitivity of noise on the texture encoding [166]. They are designed robustly to
make use of both local primitive features and global spatial structure. The descriptors
further uses adaptive quantization to obtain unique features employing the concepts of
angular quantization. The key difference as compared to LBP descriptor is the vector
quantization which is adaptive to local patches. Such a strategy of adaptive quantization
helps in obtaining the information from microfeature level of images. Additionally, adaptive
quantization is based on equal probability quantization to achieve the maximum partition
entropy [166].

Based on the success of the adaptive hybrid patterns in classifying the texture [166],
we explore them to obtain the distinctive features of normal ocular images as against
the artefact ocular images presented using either printed images or images presented on
electronic display screen. As the ocular authentication systems operating in the visible
spectrum capture color information, extracting the descriptors across color channels can
improve the texture features representation. Intuitively, using the color information boosts
the performance of the artefact detection as each channel present different information under
normal presentation and attack presentation. The distinctiveness of the color images is
sub-optimally used in biometrics and it was recommended to use image in CIE-Lab color
space to gain maximum information in three different channels [62]. We transform the image
to CIE-Lab color space [62] followed by the extraction of AHP descriptors.

Additionally, in the case of images under normal presentation and attack presentation,
the underlying information remains same for the artefact image and the bona fide image in
low frequency domain. High frequency content in those images change due to the presence of
edges, half-tones patterns in the printed artefacts while information such as Moire pattern,
aliased screen pattern can be observed in the electronic screen attack. This information
contributes to differentiate the artefact images from bona fide images. Thus, we separate
the high frequency content by applying Laplacian decomposition before extracting the AHP.
AHP can be obtained with different radius and neighbourhood pixel configuration. To
extract highly discriminative information, we obtain the AHP features with different radius
to encode the texture features and concatenate them. However, the computation time can
increase significantly with the increase in the radius and neighbourhood.

Figure 6.10 presents the attack detection scheme based on Color Adaptive Hybrid
Patterns. It can be seen from the Figure 6.10 that the image is first decomposed into
the CIE-Lab color space followed high frequency selection in Laplacian scale-space images.
Further, adaptive hybrid patterns are extracted. The features are used to learn classifiers
for each channel in CIE-Lab and one classifier for all the in concatenated form. A majority
voting is performed to decide if the presentation is a bona fide or attack presentation.
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Figure 6.10: Presentation attack detection scheme based on Color Adaptive Hybrid Patterns.

6.4.3 Classification of features using Support Vector Machines

Since the presentation attack detection boils down to a two class problem, one can learn
a classifier in different ways. In order to classify the features of bona fide presentation
versus the features of the attack presentation (aka, spoof attack), we explore Support Vector
Machine (SVM) with a polynomial kernel [24]. The detailed configurations of the SVM

classifier employed in this work is presented in Table 6.5.

Table 6.5: Configurations of the SVM employed in this work

Name Parameter

Package  LIBSVM [24]

svin type nu-svc
kernel Polynomial Kernel

degree 3

6.4.4 Classification of features using Spectral Regression Discriminant
Analysis

Spectral Regression Discriminant Analysis (SRDA) is another well explored classifier to
classify the normal presentations against attack presentations based on the efficiency and
the classification accuracy [22, 7]. Motivated by accuracy of classification using SRDA, in
this chapter, we employ SRDA classifier to differentiate the normal ocular presentations

against the artefact presentations.

6.4.5 Experiments and Results

This section provides the details on the performance of various algorithms on two different
presentation attack databases captured using smartphones. We also present comparative
performance of various state-of-art algorithms which are based on Binarized Statistical Image
Features (BSIF) [109], Local Binary Patterns (LBP) [86] and image quality features [41].

6.4.5.1 Results on MobiLive 2014 Database

The MoblLive 2014 database provides a disjoint/independent training set and testing set
which consist of 50 subjects in each test. Different teams have submitted their algorithm
on this database in the MobiLive 2014 IJCB competition [131] which have used different
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features. Further, BSIF-SVM [109] indicated the performance of ACER = 0%. The results
obtained on the same dataset using the LPFR-SVM, LCAHP-SVM and LCAHP-SRDA
algorithms [67] performed with the same ACER of 0%. The complete set of results are
tabulated in the Table 6.6.

Table 6.6: Performance of the proposed scheme on Mobilive 2014 dataset

Techniques proposed FAR FRR Mean Error Rate
by teams (or APCER) | (or BPCER) (or ACER)
HH 29.25 7.00 18.13
IrisKent 0.25 3.75 2.00
Liv-IC-INICAMP 0.50 2.00 1.25
Federico 11 1.25 0.00 0.63
GUC 0.75 0.00 0.38
IIT Indore 0.50 0.00 0.25
M-BSIF-SVM [111] 0.00 0.00 0.00
Proposed
LPFR-SVM 0.00 0.00 0.00
Proposed
LCAHP-SVM 0.00 0.00 0.00
Proposed
LCAHP-SRDA 0.00 0.00 0.00

Table 6.7: Division of PAVID database for experiments using ocular videos acquired from
each smartphone

Smartphone
Nokia Lumia 1020 iPhone 5S

Real Iris Videos

Development 20 20
Training 50 20
Testing 82 82
Artefact Iris Videos for each attack
Development 40 (20 x 2) 40 (20 x 2)
Training 40 (20 x 2) 40 (20 x 2)
Testing 224 (112 x 2) 224 (112 x 2)

6.4.5.2 Results on PAVID database

In order to effectively evaluate the different set of algorithms for presentation attack
detection PAVID, the whole database of 152 unique eye patterns (i.e. instances) obtained
using a particular smartphone is divided in three sets: Training set, Development set and
Testing set. The training set comprises of 50 unique eye patterns that were used only
for training the SVM classifier. The development dataset comprises of 20 unique eye
patterns that are used to tune any parameters associated with the presentation attack
detection algorithms. The development set if further used to determine the filter kernel
for the Laplacian pyramid, the size of the window, scales for the pyramid and parameters
of classification methods. The testing dataset comprises of 82 unique eye patterns that are
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solely used to evaluate the presentation attack detection algorithm proposed in this work.
The detailed division is provided in Table 6.7.

The Table 6.8 presents results obtained on the PAVID database using various
state-of-the-art methods such as (IQM-SVM) [41], LBP-SVM [86], and BSIF-SVM [111].
It can be observed in the Table 6.8 that the LCAHP-SRDA [70] has emerged as the best
technique for PAD out of all the techniques available in state-of-the-art schemes. Lowest
ACER is obtained consistently across all different attacks from the proposed technique. The
best ACER of 0% is obtained when the system employing iPhone as the primary sensor
is attacked using enrolment videos captured using iPhone. Similarly, an ACER of 0%
is obtained when enrolment video captured using Nokia phone is used to attack the iris
recognition system employing iPhone as capture sensor. The obtained results indicate the
applicability of the LPFR-SVM and LCAHP-SRDA approach for detecting presentation
attacks in real life verification scenarios when adapted to video based iris recognition systems,
specially working on the smartphones. The techniques are also tested on other artefact
databases using regular RGB cameras and NIR cameras in our earlier work|[70, 67].
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Table 6.8: Classification error rates obtained using various schemes for PAVID database

IQM-SVM [41] LBP -SVM [86] BSIF-SVM [111] Proposed - LPFR-SVM Proposed - LCAHP-SRDA
Real Video | Artefact Video
BPCER | APCER | ACER | BPCER | APCER | ACER | BPCER | APCER | ACER | BPCER | APCER | ACER | BPCER | APCER | ACER
P iPhone 57.31 11.6 34.45 4.87 0.89 2.88 6.09 9.82 7.955 1.21 1.78 1.49 0.00 0.00 0.00
one
i Nokia 76.92 10.71 43.81 3.84 3.54 3.69 2.56 8.92 5.74 1.28 0.00 0.64 0.00 0.00 0.00
Noki iPhone 76.92 4.5 40.71 3.84 4.51 4.175 2.56 10.81 6.68 1.28 4.46 2.87 0.00 0.00 0.00
okia
Nokia 57.31 3.57 30.44 4.87 2.67 3.77 6.09 0.89 3.49 1.21 2.68 1.95 0.00 0.00 0.00
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6.5 DISCUSSIONS AND CONCLUSION

6.5 Discussions and Conclusion

Presentation attacks pose high level of threats to existing biometric systems. In this chapter,
we have depicted the vulnerability of ocular biometric systems operating in visible spectrum
towards presentation attacks. The advancement in types of attacks range from simple print
attacks to near-real quality electronic screen attacks with both image based and video based
presentations.

In this chapter, we have discussed both kind of attacks from electronic display - image
attacks and video replay attacks. We have employed two databases for the experimental
work in this thesis of which, one is publicly available and other is a new database (PAVID)
constructed in the due course of this thesis which is now freely distributed for non-profitable
research work. The new database corresponds to large scale video based artefacts consisting
of 152 unique patterns acquired using 2 different smartphones - iPhone 5S and Nokia Lumia
1020. Further, we have systematically demonstrated the vulnerability of video based ocular
biometric system on smartphones to video replay artefacts using electronic replays. The
video based attacks are addressed using phase magnified videos with a tailored decision
module. The newly proposed technique is evaluated on the subset of PAVID dataset and
has demonstrated the applicability for real-life use case.

This chapter also presented two techniques for frame/image based presentation attacks.
For frame based artefacts, we have employed MobiLive 2014 dataset [131] and PAVID
dataset. We have evaluated the state-of-art techniques in detecting video replay attacks
using features obtained from both quality and texture features. From the set of experiments,
the features employing spatial and frequency features from Laplacian images have proven
robust in detecting artefact presentations. The features are well classified with the use of
popular SVM classifier along with majority voting. The proposed texture based methods
- LPFR-SVM and LCAHP-SRDA methods have provided the lowest ACER which is close
to 0% for video replay attacks on ocular recognition systems when the data was captured
using smartphones in visible spectrum.

The success of the texture based methods in the current chapter can largely be attributed
to the strong feature descriptors which can localize key characteristics such as additional
texture contributed by printers in the case of printed artefact and other specific patterns
in case of electronic screens such as moire pattern. Further, decomposing the image using
Laplacian Pyramid provides the scale-space information where the micro-texture information
can be observed easily. The discriminant information from each of the scales in Laplacian
pyramid is optimally used with two texture descriptors presented in Algorithm 2 and
Algorithm 3. The first set of texture based descriptors (Algorithm 2) localizes the time and
frequency features across 4 different orientations which can detect the patterns emerging
due to electronic display.

The color intensity information differs in the case of normal presentation and the artefact
presentation which can be used to identify presentation attack. However, obtaining the color
information alone may not suffice to detect attacks reliably. Thus, in the second class of
textural descriptors presented in Algorithm 3, the texture information in different color
channels from different scales of Laplacian pyramid is obtained in an adaptive manner. The
region adaptive texture information along with the global information is obtained which
are highly discriminative in nature for bona fide and artefact image. Further, adaptive
quantization of the pattern contributes significantly to identify artefacts from bona fide
images.

Although the results indicate the promising nature of the proposed methods, there is a
necessity for continued research to detect artefacts robustly to make smartphone based ocular
biometrics highly secure, especially when the artefact data is unknown. The known set of
artefacts can be handled well by devising algorithms whereas the unknown artefacts still pose
a serious threat. Thus, the need for generalizable solutions for presentation attacks including
unknown artefacts in smartphone remains a problem which needs significant research.
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The generalizability also needs to be investigated with respect to database-independent
techniques that can be applied in real-life scenarios using large scale data obtained in
visible spectrum whereas most of the current algorithms are tailored specifically for different
databases.
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Chapter 7

Multi-biometric Authentication System for
Smartphones Using Face, Periocular and Iris

Multi-biometric systems are used to achieve better authentication accuracy for secure
access controls. This chapter presents such a multi-biometric authentication system on
the smartphones. The unimodal biometric performance using face, periocular and iris
characteristics are first demonstrated which is followed by a robust multi-biometric system
with high biometric performance. The systems are realized fully on the computationally
limited smartphones (compared to desktop platforms) which are evaluated for real-life
applicability using set of experiments.

7.1 Introduction

Earlier works have successfully demonstrated that the quality of images captured using
smartphone embedded cameras are of sufficiently high quality to be accepted as the biometric
sample for various use cases [34, 141, 147, 13, 73, 113, 128, 129]. Motivated by the earlier
works including the previous chapters of this thesis, we explore a multi-biometric system that
employs face, periocular and iris images all captured with embedded smartphone cameras
for authentication purpose.

As the face image is captured from a close distance, one can always obtain periocular
characteristics and iris information with significant details. Using periocular information
in addition to face under difficult circumstances (Pose, Illumination and Expression) can
maintain and even improve the recognition accuracy of a biometric system[165, 102]. The
robustness and performance of the ocular characteristics including the iris is well illustrated
in the previous chapters (Chapter 3 and Chapter 5). Further within the face image one can
obtain the visible spectrum iris representation with sufficiently high resolution [34, 75]. As
iris is known to provide very reliable recognition performance, we make use of the iris
pattern, whenever this can be segmented. Considering the verification performance of
such systems individually employing face, periocular and iris, in this chapter we explore
them for applicability on smartphone based authentication system. Specifically, in this
chapter, we systematically explore the unimodal performance of face, iris and periocular
region independently. Further, this chapter also presents a holistic multi-biometric system,
which uses face, periocular region and iris region in a combined manner.

Unlike most of the earlier works in this direction where the biometric data was
collected using the smartphone and evaluated offline on the desktop computing platforms
[34, 141, 147, 13, 73, 113, 128, 129], in this chapter, the entire framework from capture to
computation of comparison score is carried out on the smartphones. The main motivation
behind the implementation of the multi-biometric system on smartphone is to gauge the
real-life applicability. Further, the key idea in devising the multi-biometric authentication
system is to employ the state-of-art feature extraction scheme. Thus, in this chapter, we
employ the state-of-art feature extraction schemes like Scale Invariant Feature Transform
(SIFT), Speeded Up Robust Features (SURF) and Binarized Statistical Image Features
(BSIF) for extracting the features in based on following factors:

1. Earlier works have employed these techniques to obtain reliable performance in
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biometric systems [34, 141, 147, 13, 73, 102] which can be considered as a basis for
using it on smartphone biometric system.

2. The implementation of these methods are available openly for the usage and thus any
systems can leverage the merits of these feature extraction techniques by tuning to
specific applications.

3. As these feature extraction methods are not demanding in terms of computation, they
can be easily adapted to mobile/smartphones platforms with limited computational
complexity.

4. Determining comparison score between two set of features using these descriptors can
be obtained using low computation distance metrics as against expensive dictionary
approaches.

In the similar manner, we employ 2D Gabor features with Hamming Distance comparison
following the works of iris recognition [29] for smartphone based iris recognition.

Although highly robust algorithms for iris and periocular recognition are presented in
Chapter 3 and Chapter 5, it has to be noted that these methods can be demanding for
computationally limited devices like smartphones. Specifically, the sequence of operations
in classification involves in representing the signals in sparse manner or learning the feature
set in a collaborative manner which are not optimally designed for systems with low memory
and computational power. Thus, in this chapter, we have made use of publicly available
algorithms that are not demanding and can easily be ported to run on smartphone platforms
such that the entire pipeline of image capture to comparison score computation is available
on smartphone.

In the remainder of this chapter, Section 7.2 presents the architecture of multi-biometric
system for the authentication system. Section 7.3 presents the database employed to evaluate
multi-biometric authentication system. Section 7.4 details the experiments carried out and
the corresponding results obtained. Section 7.6 provides the remarks and summary from
the current chapter.

7.1.1 Contributions

The contributions of this chapter can be summarized as:

o Explores multi-modal biometric system for authentication on smartphones using face,
periocular and iris characteristics.

e Multi-biometric system presented here is tested using 78 subjects on two different
devices to gauge the applicability in real-life authentication applications.

e The presented system is fully realized and tested on smartphones. The entire
pipeline starting from image capture including segmentation, feature extraction and
comparison are implemented on the smartphones. This chapter thus validates the
applicability of presented system on all of the current smartphones capable of providing
images of sufficient biometric quality.

7.2 Multi-biometric Authentication System on Smartphones
This section presents architecture and principles of multi-biometric authentication system

on smartphones. First, we list explicit advantages of the using multi-biometric system on
smartphones and later present the schematic of the proposed multi-biometric system.
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7.2.1 Advantages of Multi-biometric Authentication System

Multi-Biometric systems have proven to perform better than systems based on single
biometric characteristics especially in a unconstrained acquisition scenario [126]. The
availability of all the intended biometric characteristics can be optimally acquired when the
acquisition is cooperative. In case of an unconstrained acquisition conditions, relying on a
single biometric characteristic may not yield best performance for authentication. Further,
when the biometric systems are intended to capture face region, they inherently capture
periocular region with acceptable quality [126, 58] and in an ideal capture distance, iris
characteristics can be obtained with good details. Further, various works have demonstrated
the use of periocular region under the challenges of uncooperative/non-standard face or iris
capture [101, 102, 63, 11]. Thus intuitively, the performance of the system can be improved
by employing all the characteristics from face that include face, periocular (left and right)
and iris (left and right) [102, 11, 88], specifically in the scenarios listed below:

e When the subject captures the face image with non-standard pose resulting in partial
face capture, the multi-biometric system can rely on periocular region or iris (if
available).

e When the subject captures the face image in non-uniform illumination on one side
of the face, the textural details on the complete face may not be fully available and
thus, multi-biometric system can employ ocular region which is not affected due to
illumination and shadows [102].

e When the subject captures the face image with the expression such as with smile, the
periocular region is affected less as compared to face region [101].

e When the subject captures the image by holding it very close to camera, the appearance
of the face image can be impacted by geometrical distortions in face and thereby, the
multi-biometric systems can employ iris and ocular region as the image is captured in
closer range [88].

7.2.2 Schematic of Multi-biometric Authentication System

The multi-biometric (a.k.a multi-modal) authentication system for smartphones is illustrated
in the Figure 7.1. The system combines face, periocular and iris recognition subsystem
as the core components. When a particular subject wishes to enrol into the system, the
image is captured and provided to the face detection subsystem. This subsystem works
synchronously with the capture device or camera by providing continuous feedback following
the architecture in our earlier work[73]. If the face is not detected in the captured frame,
the face detection subsystem sends continuous feedback to recapture. Once the captured
face sample is determined to be of sufficient quality by the Haar cascade based face detector,
the exact region of face is localized[18].

The localized facial region is further submitted to the face recognition and periocular
recognition subsystems. Along with the processing in these two subsystems, the iris
recognition subsystem is activated, if the iris is represented with sufficient quality. For
a data subject to whom the visible spectrum representation of the iris pattern is insufficient,
as in the case of dark irises, the iris recognition subsystem shall not attempt to enrol an iris
reference.

OSIRIS v4.1 is employed for the segmentation due to the robustness demonstrated in
segmenting the images from both visible spectrum iris samples [135, 76, 117]. In this work, a
lighter version of OSIRIS v4.1 is implemented, specifically to run on smartphones (Android
and i0S platforms) devices under limited computation. As the segmentation task of the iris
on smartphones is a challenging problem, this work contributes significantly by providing the
open source iris segmentation scheme for smartphone environments operating at minimal
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Figure 7.1: Schematic representation of multi-biometric authentication system; The blocks
in blue color indicate imperative contributions to the authentication process (i.e. to the
decision subsystem) and the blocks in red color indicate an optional contribution in case the
iris pattern has been segmented successfully.

response time. The segmented iris texture is further processed using Daugman’s rubber
sheet expansion technique [29]. The iris pattern is normalized to a dimension of 512 x 64
pixels. Once the subject is enrolled, all templates corresponding to face, periocular and iris
are stored in the smartphone embedded database.

When the subject wants to authenticate, the image is acquired and the face is detected
as illustrated previously. The features are extracted from the face and periocular region.
Depending on the visibility and quality of the iris texture pattern, iris features are extracted
as well. SIFT, SURF and BSIF features are extracted for face and periocular region while
2D Gabor features are extracted from iris. Probe feature vectors are compared against
the reference templates stored on the smartphone. We have employed Fast Approximate
Nearest Neighbor Search with Hierachical K-means Tree to determine the similarity of
feature vectors in case of SIFT and SURF [93]. Bhattacharya distance [23] is employed to
measure the similarity score between two histograms of BSIF features. The scores obtained
from all modalities are fused at score level and submitted to the decision subsystem to finally
authenticate the data subject.

7.3 Multi-Biometric Smartphone Database

In order to validate the performance of the multi-biometric system running on smartphone
platforms, in this chapter, we have created a database with images captured from two
different devices, the smartphone - Samsung Galaxy S5 and the tablet - Samsung Galaxy
Note 10.1. The specification of hardware is listed in the Table 7.1. It has to be specifically
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noted that the multi-modal authentication system was evaluated using the data captured
from 78 subjects[75]. The database was divided into a development and testing dataset. The
development database consisting of 32 subjects was used to tune the parameters for feature
extraction algorithms and weights for different fusion schemes. As there is no training
involved, there arises no requirement to reserve a partition of the database for training
purposes. The partition of the entire database is provided in the Table 7.2.

Table 7.1: Specifications of different hardware used in this chapter.

Device Operating System Screen Size Back Camera
Samsung Galaxy S5 Android v4.4.2 1080 x 1920 pixels 5.1 inches | 16 MP, 5312 x 2988 pixels
Samsung Galaxy Note 10.1 Android v4.4.2 800 x 1280 pixels, 10.1 inches | 5 MP, 2592 x 1944 pixels

Table 7.2: Division of database into development and testing; *Note: 15 indicates 15 different
sessions of which 5 correspond to reference image and 10 correspond to probe images

Development set Testing set

Camera Total Subjects
Subjects | Subjects | Subjects | Subjects

x Images x Images

Smartphone - Samsung S5

Back 78 32 32x15 46 46x15

Back Assisted 78 32 32x15 46 46x15
Tablet - Samsung Note 10.1

Back 78 32 32x15 46 46x15

Back Assisted 78 32 32x15 46 46x15

For both the development and testing set, each subject is enrolled into the system by
capturing 5 reference samples on each of the two different portable devices as mentioned in
the Table 7.1. The enrolled subject on each of the device is authenticated by using 10 probe
samples captured in different attempts ranging from single day to several days. For both
reference and probe samples the image was acquired using the back camera of the device,
as it provides higher image resolution and it is expected to have the same resolution for the
front camera in near future due to continuous improvement in smartphone cameras.

Thus, in order to obtain an optimal baseline performance of the system, images in this
database were also captured by a trained expert in similar settings for each attempt of
enrolment and probe which is hereafter referred as assisted acquisition. Therefore, two set
of reference images and probe images were acquired for each device. For each subject, there
are in total 15 images (5 reference images and 10 probe images) captured from a single device
in a single setting of capture (i.e., self acquisition or assisted acquisition). The experimental
protocol on this database is explained in the upcoming section.

Table 7.3: Total images from each device in the database

Device Back Camera | Rear Camera (Assisted)
Samsung Galaxy S5 2340 2340
Samsung Galaxy 2340 2340
Note 10.1
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7.4 Experiments and Results

The multi-biometric system is evaluated as a stand-alone biometric system in this chapter.
The system is first evaluated seeking the biometric performance for three unimodal
characteristics and later for multi-biometric approach. In order to obtain unimodal
performance systematically, three sets of experimental protocols are designed:

1. In the first set, experiments are designed to evaluate the system using face based
authentication.

2. Second set of experiments evaluates the performance of the system when the periocular
region alone is used for recognition.

3. Another set of experiments are conducted to measure the reliability of iris based
recognition on a smartphone scenario in unconstrained illumination.

Each of these experiments is described in the sections below. Further, the last set of
experiments are designed to combine all the different biometric characteristics with score
level fusion, which are detailed in Section 7.4.5.

7.4.1 Evaluation protocol

All experiments in this work are based on the database described in the Section 7.3. Each of
the images from the reference set is compared against the probe image to obtain the genuine
and imposter score. The enrolment and the probe set are disjoint in both development
set and testing set where 5 images are present in enrolment set for a subject and 10
images in probe set. Thus, for each subject in testing set of 46 users, 50 genuine scores
are computed (5 enrolment x 10 probe). Similarly, 2,250 impostor scores are obtained
(5 enrolment x 46subjects x 10 probe). The detailed distribution of the genuine and impostor
scores from the number of comparisons are listed in the Table 7.4.

Table 7.4: Details of the number of samples and distribution of genuine-impostor composition
from the testing dataset

Total Reference | Probe | Total Geniune Imposter

Camera Subjects Image Image | Images | Comparisons | Comparisons

Smartphone Samsung S5

Back 46 5 10 690 2300 103500

Back Assisted 46 5 10 690 2300 103500
Smartphone Tablet

Back 46 5 10 690 2300 103500

Back Assisted 46 5 10 690 2300 103500

7.4.2 Experiments on Smartphone Based Face Recognition

The presented system captures the image with the rear camera of smartphone based on the
optimal focus computed using the preview frame in the camera’s view. Once the image is
captured, the user is presented a choice to either keep or discard the image in order to have
sufficient visible quality. Capturing facial images is very challenging with respect to pose and
illumination changes. In this set of experiments, we explore the face recognition performance
accuracy under the assumption that neither pose and illumination are explicitly controlled
nor that we deliberately introduce weak poses or ill-suited lighting. Table 7.5 presents the
performance for face recognition obtained using various feature extraction methods.
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Since the capture is not regulated by specific conditions and assumed to be cooperative!,
in this chapter, we have also analysed the data obtained in the similar settings by a
trained expert. The data collected by trained expert is considered as hereafter referred
”Assisted” in the rest of the chapter. The main motivation to study the performance
when captured by an trained expert is the compare the reliability of the proposed system
when used in unconstrained (semi-cooperative) settings. Further, such a study also reveals
the agonistic nature of the algorithms when the data can be degraded arising out of
non-standard interaction with the device (smartphone) and number of other factors including
the illumination, motion blur while capture process is underway.

Table 7.5: Biometric performance in terms of Genuine Match Rate and Equal Error Rate
for unimodal approaches.

Face Right Periocular Left Periocular Both Periocular
Camera Feature Extraction — — . —
FMR @ 0.01% | EER | FMR @ 0.01% | EER | FMR @ 0.01% | EER | FMR @ 0.01% | EER
Smartphone - Samsung S5
SIFT 76.36 5.18 57.34 6.63 45.35 7.07 65.89 4.40
Back SURF 45.03 10.21 70.56 6.55 59.28 6.20 76.00 4.52
BSIF 87.55 4.65 75.86 7.01 76.00 5.80 83.24 4.14
SIFT 88.43 1.88 65.43 5.00 70.83 5.03 82.04 3.04
Back Assisted SURF 52.91 5.13 84.04 4.00 80.22 4.86 90.52 3.13
BSIF 94.39 1.61 79.00 5.56 72.09 5.73 83.96 3.57
Tablet - Samsung Note 10.1
SIFT 92.83 2.62 31.43 9.40 61.91 8.40 72.96 6.85
Back SURF 81.83 3.34 77.26 6.01 74.30 7.54 85.35 5.04
BSIF 94.61 2.43 77.39 5.91 77.30 6.75 87.04 4.71
SIFT 95.57 1.81 30.83 8.79 48.52 6.87 72.17 5.18
Back Assisted SURF 79.91 1.96 71.30 5.31 51.09 5.47 82.00 3.87
BSIF 96.65 2.03 82.91 5.00 85.78 4.78 89.96 3.74

The data obtained from the back camera in self aquisition (i.e. non-assisted capture
mode) provides an EER of 4.65% corresponding to GMR of 87.55% at FMR = 0.01% with
BSIF features. The data obtained in the assisted mode has an EER of 1.61% corresponding
to a GMR of 94.39% at FMR = 0.01%. Figure 7.2 (a) and (b) present the Receiver Operating
Characteristic (ROC) curves for face based recognition for self acquisition and assisted
acquisition from Samsung S5 while Figure 7.2 (¢) and (d) present it for the Samsung Note
10.1 tablet.

It can be observed that the face recognition is again validated for promising recognition
performance for biometric authentication on smartphones in line with the earlier works[141,
13, 147]. Tt can also be noted that when the subject uses the back camera to capture the face
image in a self acquisition mode, the challenges due to pose alignment cause a slightly lower
performance but comparable to the images captured under the same settings by a trained
expert. In the similar manner, Figure 7.2 presents the obtained performance on database
collected using the Samsung Galaxy Note 10.1. Following the previous conventions of the
reporting the results, it can be observed that the Figure 7.2 presents the performance for
both self acquired images and images captured by expert (assisted mode).

IBanking applications are typically designed such that the users are cooperative to provide the biometric
data to the authentication system.
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7.4.3 Experiments on Smartphone Based Periocular Recognition

As discussed in earlier sections, the problem of non-uniform illumination, pose changes
and various expression is known to degrade the performance of face recognition systems
[165]. The problem becomes more prominent, when the capture device is not fixed as in
a border crossing scenario or authentication for an e-commerce application. When the
face is illuminated in a non-uniform manner, one of the two periocular regions which is
unaffected can still be used for recognition as discussed in earlier works [102]. The intrinsic
advantage in using periocular information is that two periocular regions can be used for one
subject complementing or substituting the information from the overall face image.Thus, we
also explore periocular based recognition subsystem to address the challenges arising out of
non-uniform illumination in this section.

Table 7.5 presents the recognition performance in terms of EER and GMR for periocular
features with various feature extraction techniques. Images of periocular region from right
side of the face provides an EER of 6.55% with back camera (SURF) and 4% with assisted
acquisition (SURF). Table 7.5 also presents the recognition performance when the left
periocular image is used. An EER of 5.80% is obtained with back camera (BSIF) and
EER of 4.86% is obtained with back camera in assisted mode (SURF). Similar results can
be seen for the periocular recognition with tablet device. Combining both the periocular
region as one unique characteristic (by concatenating the periocular region next to each
other) further boosts the authentication performance as indicated in the Table 7.5. An
average gain of around 1.5% in EER can be seen when both periocular information is fused
to treat it as an single modality.

Figure 7.3 and 7.4 present the ROC curves for periocular based recognition for different
acquisition modes with Samsung S5 and Samsung tablet. The periocular based recognition
can perform close (comparable) to the accuracy of face based recognition as it can be
observed from the experiments.
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7.4.4 Experiments on Smartphone Based Iris Recognition

Motivated by the recent works on iris recognition in visible spectrum and the possibility of
using the iris information on a smartphone [108, 34, 8, 76], in this chapter, we also explore
the iris recognition from the images obtained on smartphone.

The key aspect in this analysis is that the entire iris recognition pipeline starting from
image capture to segmentation until verification is tested on the framework developed for
smartphones. Further, since each person has two unique iris patterns, we have explored the
performance of the smartphone based iris recognition using each individual eye. We have
employed 2D Gabor features with Hamming distance for similarity score computation [29]
to make use of state-of-art technique.

Unlike the case of periocular region where both the images can be used for recognition
purpose, the availability of iris depends highly on the accuracy of the segmentation
algorithm and visibility of the texture. Due to unconstrained nature of iris imaging
in the visible spectrum, a number of challenges regarding the sample quality must be
expected. Out-of-focus imaging and motion blur are more prominent under smartphone
based iris imaging than it is the case for conventional near infrared iris imaging. Thus,
the general algorithm performance metrics FMR and FNMR are insufficient to report the
effective performance under the presence of iris images that can not be segmented. All the
non-segmented iris images are treated as Failure-to-Acquire (FTA). Data subjects that due
to dark iris patterns cannot be enrolled with the visible spectrum samples must be treated
as Failure-to-Enroll (FTE) as discussed in the Chapter 2. We thus present the results using
Generalized False Accept Rate (GFAR) and the Generalized False Reject Rate (GFRR)
according to International Standard ISO/TEC 19795-1 [54] along with indicative metric of
Generalized Equal Error Rate (GEER).

Table 7.6: Performance of iris recognition

C Smartphone - Samsung S5 Tablet - Samsung Note 10.1
amera
Tris 1- GFRR (%) | GEER (%) | Iris 1- GFRR (%) | GEER (%)
@ GFAR=0.01% @ GFAR=0.01%

Left 38.95 22.67 Left 35.93 24.20
Back Assisted

Right 48.80 23.72 Right 32.67 26.44

Back Left 42.56 23.85 Left 39.70 22.74
acl
Right 39.90 22.89 Right 43.16 21.88

Table 7.6 lists the algorithmic performance of iris based recognition for right and left
iris of both smartphone and tablet device. A GEER of 22.67% is obtained for left iris and
23.72% is obtained for right iris related to smartphone data. Almost comparable GEER is
obtained for the back camera in self acquisition mode. Similar results are achieved for the
tablet as indicated in the Table 7.6. Figure 7.5 provides the detailed graphical illustration
of the iris based recognition performance which depicts the best accuracy closer to 50%
indicating the challenge in wider deployment of iris recognition.

7.4.5 Experiments on Multi-modal Recognition

Face region comprises of periocular information which can be used independently or jointly
with the face information. Non-standard and unconstrained face acquisitions always suffer
from non-standard pose, illumination and angle. Even under such non-standard conditions,
the use of the periocular region has proven to perform substantially or equivalently well as
compared to face based verification [101]. In the similar terms, an earlier work has confirmed
the performance of periocular information for authentication on smartphones [73]. Further,
as the iris and face data contribute complementary information, we also explore multi-modal
fusion using the face, periocular and iris data. Thus, under the non-uniform illumination on
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Figure 7.5: ROC plots of iris recognition

face, at least one of the features, either face, periocular or iris provides good features and/or
comparison scores for recognition.

Based on the knowledge of fusion in biometrics, systems have devised two strategies for
fusion of biometric characteristics [125]:

1. Fusion of independent biometric characteristics at feature level and combine them to
obtain an aggregate score which is popularly referred as Feature level fusion.

2. Fusion of comparison scores from independent biometric features and obtain an
aggregate score called as Score level fusion.

Although, two strategies are used in biometrics, comparison score level fusion has
demonstrated the applicability in earlier works [125, 140, 58, 127]. It was also demonstrated
in our work earlier that the feature level fusion provides minimal improvement as compared
to score level fusion[74] which was in-line with the findings of other work [125, 140, 58, 127].
Thus, in this work, we employ comparison score level fusion in the multi-biometric system.

Figure 7.6 presents a simplistic view of comparison score level fusion scheme for
multi-biometric system employing face, periocular and iris. As the comparison score from
iris is subject to visibility of texture pattern, it may not be contribute always and thus,
it is indicated in the red block in the paradigm of Figure 7.1. In the multi-biometric
authentication framework presented in this chapter, five different characteristics which
include face, left periocular, right periocular, left iris and right iris are employed. Iris
provides complementary information as compared to the face and ocular region as the
features descriptors differ from face and ocular region. Thus, in order to leverage the scores
from different feature extraction of face and ocular region, we fuse the scores from three
features. If the comparison scores from BSIF features are represented by C, SIFT features
are represented by Cs and SURF features are represented by C,,, then the fused score for
each modality is computed using weighted fusion as given by Equation 7.1.

F=wy*Cpp+ws*Cps + wy x Cys (7.1)

where wy, ws and w, refer to weights of BSIF, SIFT and SURF respectively. Based on
the trials conducted on development set, the w,, ws and w, were set to 0.7, 0.15 and
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Figure 7.6: Schematic representation of multi-biometric authentication system with score
level fusion; The blocks in blue color indicate imperative contributions to the authentication
process (i.e. to the decision subsystem) and the blocks in red color indicate an optional
contribution in case the iris pattern has been segmented successfully.

0.15 respectively. The determined weights were further used for the scores from periocular
characteristics as given by Equation 7.2 for left and right periocular region given by P, and
P, respectively.

P = wy * O+ wg * Clg + wy * Oy Pr = wp % Crpy + wg % Crg + Wy * Cryy (7.2)

Further, the scores are normalized to the range of 0 — 1. The multi-biometric score fusion is
explored using Min, Max, Product and Dynamic weighting rule. If the fused score of face
is provided as F, the fused score of periocular region is provided as P, for left periocular
and P, for right periocular region and the comparison score for iris is represented as I; for
left iris and I, for right iris respectively, then the final comparison score F. can be obtained
using one of the schemes given in the following subsections.

Min-score Fusion Rule

In this fusion scheme, the score corresponding to the minimum of all the obtained scores is
used. The final score is obtained in accordance to Min-rule given by F as:

F. =argmin{F, I}, I, P-, P }; (7.3)

Max-score Fusion Rule

Under the Max-score fusion rule, the score corresponding to the maximum in the set of
modality specific scores is used. The obtained final score in accordance to the Max-score
rule is given as below:

F.=argmax{F, I}, I, P., P}; (7.4)

Product-based Fusion Rule

Further, the product rule has been popularly explored in biometrics. In this scheme we
compute the product score by multiplying the scores obtained for each modality. The
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obtained final score under the product rule is given as:

F.=FxI;xI, %P, x Py (7.5)

Dynamically Weighted-Score Fusion Rule

Since the scores of each modality contribute to the performance in various degrees, we
explore a dynamic weighting scheme to make the recognition system robust. As discussed
earlier, the performance of the system can be improved by incorporating multiple modalities
[126]. At the same time, due to the various issue regarding capturing iris textures in the
visible spectrum, it is likely that no iris data is available for a portion of subjects. Thus, in
this work we propose a dynamic weighting scheme, where each modality is assigned a weight
such that sum of all weights equals 1. Under circumstances where a particular modality
does not contribute to the comparison score, the weight of that particular score is set to
0 and the weights are redistributed equally among all other modalities contributing to the
recognition. Thus, the dynamic weighted fusion scheme is given as by Algorithm 2 and be
summarized as Equation 7.6.

F,=wi «F+wy* I} + ws x I, +wy *x P + ws * B (7.6)

where wy + wo + w3 + wy + ws = 1. For instance, if the score from right iris is missing,
the weight w3 is set to 0 and the new assignment of the weight is computed such that
w1 + wo + wy + ws = 1.

Algorithm 2 Dynamic Weight Distribution for Multi-biometric Characteristics

1: Initialize:

5
D iy Wi
=1 Wi .
w; +— == ,i=1,...,5

)
where S0 w; = 1
2: if All comparison scores among (F, I}, I, P, P;) are available then

[

LW s
4: else if One missing comparison score among (F, I}, I,., P., P;) then

24

.2 W; .
5: wﬁ—%,z:lw..,él

3: w; =

6: else if Two missing comparison score among (F, I}, I, P., P;) then
3
7 wﬁ—%,z:l,...ﬁ
i

8: else if Three missing comparison score among (F, I}, I,., P., P;) then

2
Do Wi

9: w; — ,i=1,...,2
(3

10: else

11: w; =1
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Table 7.7: Verification accuracy of multi-biometric score level fusion obtained by employing
face, periocular and iris characteristics on the complete database. The performance can be
compared against the uni-modal performance of face region alone given in the last row of
this table.

Samsung S5 Samsung Note
Fusion Scheme Camera .
GMR (%) EER GMR (%) EER
@ FMR = 0.01% @FMR = 0.01%

Back Assisted 99.17 0.43 88.57 3.43

Min Rule
Back 97.12 0.93 88.13 4.34
Back Assisted 50.78 10.71 11.65 25.93

Max Rule
Back 52.94 12.10 17.74 22.59
Back Assisted 84.13 15.34 50.65 47.96

Product
Back 84.81 14.37 44.61 48.08
Back Assisted 99.13 0.43 99.20 0.48

Weighted Fusion
Back 97.98 0.68 97.91 0.92
E Back Assisted 94.39 1.61 96.65 2.03
ace

Back 87.55 4.65 94.61 2.43

Table 7.7 presents the results for various multi-modal fusion schemes. It can be observed
that the proposed system based on multi-modal biometric characteristics is robust in terms of
recognition accuracy. The dynamic weighting fusion scheme provides best performance with
an EER of 0.43% under assisted acquisition and an EER of 0.68% for data obtained in the
self acquistion mode. Further, Figure 7.7 presents the ROC plots for multimodal biometric
performance using dynamic weighted fusion scheme for data captured from Samsung S5
smartphone.
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Figure 7.7: ROC plots for recognition based on dynamically weighted multi-modal fusion
for Samsung S5 smartphone

7.5 Discussion

In this chapter, a multi-biometric authentication system specifically designed to work
on smartphones is presented. The performance of uni-modal approach and multi-modal
approach was demonstrated systematically with a set of experiments. The recorded
performance indicates the feasibility of using such a system for authentication purposes.
Further, the benchmarking with the data captured by a trained expert in similar settings of
self-capture indicate that there is no drastic change in performance of the system validating
the usability.
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The set of experiments explored for fusion of comparison scores indicate the improvement
of biometric performance. In the direction of this work, future works should explore the data
captured in extremely different lighting conditions such as enrolment in regular illumination
and verification attempt in harsh illumination. Another important direction is to capture the
data in non-cooperative manner where partial face is available for verification and validate
the proposed multi-biometric system.

7.5.1 Remarks on Execution Time

The speed of the prototype for proposed system implemented on Android platform (OS -
KitKat 4.4) from capture to verification is based on the factors including the capture time
of face image. Significant time (2-3 seconds) is spent for the capture of the face image.
Once the face image is captured, the feature extraction and feature comparison happens in
milliseconds. Further, the fusion of comparison scores is executed in fraction of milliseconds.
The averaged time for each of the different operation is provided in the Table 7.8.

Table 7.8: Execution times for different operation in multi-modal biometric system

Operation Time

Samsung Galaxy S5 | Sasmung Note 10.1

Face Capture < 2 Seconds < 2 Seconds

SIFT 0.35 Seconds 0.38 Seconds

Feature Extraction | SURF 0.32 Seconds 0.38 Seconds

BSIF 0.26 Seconds 0.3 Seconds

SIFT 0.11 Seconds 0.13 Seconds

Compariosn SURF 0.16 Seconds 0.19 Seconds

BSIF 0.08 Seconds 0.09 Seconds

Fusion 0.02 Seconds 0.02 Seconds

7.6 Conclusion

In this chapter, we have explored multi-biometric authentication framework for
authentication on smartphones, specifically, fully realized and implemented on smartphones.
Most of the earlier works have employed data from smartphones to carry out the recognition
on desktop platforms, this chapter has illustrated the entire system on the smartphones.
Further, this chapter has demonstrated through a series of experiments, the superior
performance viable for many smartphone (tablet) devices which are capable of capturing the
images of sufficient quality. In the first set of experimental protocols, uni-modal verification
is investigated with face, left and right periocular region along with left and right iris region.
The practical viability of using iris alone in visible spectrum was reiterated in this chapter
which indicated lower performance due to low texture visibility and segmentation errors.
The best unimodal verification rate among all the experiments was obtained for face
based authentication with GMR of 94.39% for Samsung S5 smartphone and GMR of 96.65%
for Samsung Note tablet. Availability of three modalities such as face, periocular (both left
and right) and iris (both left and right) has motivated us to perform score level fusion. The
best verification rate of 94.91% GMR is obtained for smartphone and GMR of 96.58% is
obtained for tablet. We have also explored comparison score level fusion using the scores
obtained from all the features. The dynamically weighted score level fusion has provided
an optimal performance with a GMR of 97.98% and 97.91% for smartphone and tablet
respectively. The obtained performance is slightly lower (5 2%) than performance obtained
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with the multi-biometric system when the images are acquired by trained expert indicating
the usability under semi-cooperative environments.

The obtained performance serves as a good indicator of the proposed multi-biometric
system for secure applications alternative to multi-factor authentication system. Possible
future works should investigate the non-cooperative data capture within the system and
fine-tune the algorithms to handle such unconstrained data. Additionally, future works can
investigate better fusion approaches to handle missing scores due to missing characteristics
such as non-segmented iris as a result of non-cooperative data capture. Handling such
missing scores to improve the verification accuracy results in robust biometric systems.
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Chapter 8

Conclusion

Advancements in the camera with superior quality optics on smartphone has provided a
platform to capture biometric data in a contactless manner for authentication applications.
In this thesis, we have evaluated and demonstrated the applicability of iris and periocular
biometric data captured from smartphone in visible spectrum for authentication purposes.
Further, we have presented a multi-biometric system for robust authentication on
smartphones using iris, periocular and face characteristics. Based on the work presented
together with the experimental validation, the following specific conclusions can be drawn
which are listed below:

1. The challenge in adopting visible iris recognition on smartphone can be attributed to
factors that include out-of-focus images, motion blur, partial availability of iris due
to closure of eye and heavy pigmentation density (collagen fibrils and melanin) in iris.
In addition, capturing the images by holding the smartphone at different distance
from face and the way of interaction with the device by different users results in iris
images which exhibit varying iris-pupil radius. As most of the segmentation schemes
for iris recognition work in the known range of iris-pupil radius, the segmentation
remains a challenge. In this thesis, we have addressed the challenge by estimating the
radius using saliency based approach to localize coarse iris boundary that has improved
segmentation accuracy as compared to standard OSIRIS v4.1.

e The proposed technique has resulted in 70% accurate segmentation on average for
MICHE-I database and further improved the EER by 5.8% for the data captured
from different smartphones in different capture conditions.

o On the VSSIRIS database, the method has resulted in 80% accurate segmentation
while lowering the EER by 6.12% for images captured with different smartphones.

This thesis has contributed to improve the open source OSIRIS v4.1 segmentation
scheme by overcoming the need of manually providing the radius of initial estimate of
iris boundary.

2. The iris features extracted need to be discriminative and robust enough to achieve
good verification performance due to number of challenges listed above which results
in partial iris availability in many cases. This thesis has contributed a new feature
extraction scheme based on deep sparse filtering to extract robust features for
reliable performance. The deep sparse filtering has experimentally demonstrated the
improved performance on two different public databases as compared to performance
obtained using other state-of-art techniques. Higher verification accuracy with EER =
7.75% was achieved with the new feature extraction scheme on VSSIRIS database on
average for all the images captured using different phones. Further, a gain of 2% was
obtained on EER for different datasets over other state-of-art methods on MICHE-I
database.

e This thesis has contributed to open-source feature extraction scheme to promote
reproducibility and re-usability in biometric research community. The code for
this can be availed for academic use together with the publication[76] or at:
www.nislab.no/biometrics_lab/code/deepsparse_iris.
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e The newly created iris database in visible spectrum for academic research from
www.nislab.no/biometrics_lab/vssiris_db.

3. Visibility of texture is directly dependent on the pigmentation density in iris and
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higher pigmentation leads to low texture visibility in images when captured in visible
spectrum, specifically on smartphones. Lower texture visibility in the captured image
directly impacts the verification performance by resulting in lower values. In this
thesis, we have presented an imaging set-up using a simple white LED to mimic the
LED on the smartphones. The images captured using the LED based illumination
have shown clear texture pattern and further resulted in good verification performance
which is comparable to the performance obtained from iris images captured in NIR
for corresponding subjects with high pigmentation density. The images obtained using
the LED illuminated acquisition has demonstrated a generalized EER of 6.74% with
a GMR of 91.86% at FMR = 1072 for the images captured with Nokia Lumia 1020
smartphone which is comparable to the same set of images captured with NIR device.

Although iris recognition in visible spectrum is promising with a good proportion
of population with light colored and mildly pigmented iris, the challenges remain
open when iris is used for larger population with high pigmentation density without
additional illumination. Thus, in this thesis, we have demonstrated the use of
periocular characteristics as alternative mode to authenticate using the data captured
from smartphones in visible spectrum. The unconstrained periocular data with
smartphones can be used optimally if the robust and discriminant features are
extracted. Thus, in this thesis, we have proposed to employ time-frequency features
of deep sparse filter response referred as DeSTiFF for periocular images. The
significance of new feature extraction technique (DeSTiFF) is validated through a
series of experiments on two publicly available databases along with newly constructed
periocular database - ViSPer in the course of this thesis. The ViSPer database
is made available for the non-profitable research purposes. High verification of
GMR = 99.8% was obtained on ViSPer database and close to 100% GMR was obtained
at FMR = 0.1% on MICHE-I database signifying the applicability of new feature
descriptors. The obtained verification accuracy of GMR = 98% at FMR = 1072
on large scale VISOB database further exemplifies the applicability of periocular
recognition for smartphone captured data. A key observation is to note the degradation
in verification performance when the data is captured in harsh illumination.

e The preliminary version of this feature extraction was submitted to challenge
session on periocular recognition in visible spectrum held in conjunction with
ICIP-2016. The results obtained on the large scale database captured in
non-standard and harsh illumination has demonstrated superior performance
compared to state-of-art schemes [69].

o VisPer database is distributed freely to promote reproducible research and can
be availed from: www.nislab.no/biometrics_lab/visper_db.

o The implementation of DeSTiF F feature extraction scheme to obtain robust and
discriminant features for periocular images can be obtained from:
www.nislab.no/biometrics_lab/code/destiff_periocular.

Further, driven by the fact that face can be captured to obtain both iris and periocular
data with significant details, we have presented a multi-biometric authentication
system using face, iris and periocular recognition. Based on the independent systems
operating with iris and periocular, we have employed the state-of-art techniques to
realize a multi-biometric authentication system using face, iris and periocular. The
presented biometric system is designed to work on smartphones (including tablets)
which are inherently limited by low computational power as compared to regular
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desktop computing platforms. Performance derived from multi-biometric systems
on smartphone platforms has shown acceptable biometric performance resulting in
99% GMR at FMR = 1072 by fusing the comparison scores of different biometric
characteristics.

6. The biometric systems can be deemed reliable under the condition that they are not
prone to attacks at various levels of operation. The systems can be attacked easily at
the capture level, specifically for non-supervised data capture devices as in the case
of smartphones. This thesis contributes robust algorithms to address the presentation
attacks on the smartphone platforms for authentication systems employing ocular
characteristics. The set of experiments on two public databases has resulted in 0%
classification error of bona fide and attack presentation indicating the robustness of
presented techniques to prevent the artefact data from being accepted into biometric
system. The use of micro-texture features in different scale spaces has indicated
promising feature in artefact classification.

e This thesis contributes to promote reproducible research by disseminating the
presentation attack database (PAVID) collected during this thesis and be availed
from: www.nislab.no/biometrics_lab/pavid_db.

o This thesis also distributes the implementation of PAD algorithms that can be
obtained from: www.nislab.no/biometrics_lab/code/pad_lpfr_lachp.

8.0.1 General Conclusions

Smartphones are being used as an authentication unit for commercial applications such
as banking and e-commerce applications using biometric data [148; 48]. In this thesis,
iris, periocular and face characteristics captured using smartphone embedded cameras are
explored for biometric authentication. Based on the experimental work carried out in this
thesis, the following general conclusions are derived as listed in this section.

e Even though iris recognition is challenging in visible spectrum, especially using the
data captured from smartphones, it can still be realized by devising robust feature
extraction schemes. The state-of-art techniques for feature extraction specifically
tailored for NIR spectrum do not provide good performance in visible spectrum due to
low visibility of texture pattern and higher pigmentation density. The low performance
can be attributed to high number of false matches in unconstrained iris data in
visible spectrum. Robust methods such as deep sparse filtering proposed in this
work has shown the effectiveness to reduce such false matches for visible spectrum iris
recognition even under low visibility of texture. Texture extraction filters learnt using
more sophisticated approaches of machine learning such as deep sparse filtering are
expected to obtain discriminant features to yield improved or efficient results.

e The challenge of iris recognition remains open for heavily pigmented iris where
innovative illumination in visible spectrum needs to be employed. Alternatively,
periocular information captured in visible spectrum can be employed for authentication
applications. Texture based features like BSTF and key-point based descriptors like
SIFT and SURF with simple comparison schemes perform well when the periocular
data is captured in semi-cooperative manner while robust feature extraction schemes
based on deep sparse filtering are required to achieve good verification performance,
especially when the data is captured in harsh illumination conditions.

o Rather than employing smartphone to capture biometric data alone, biometric
authentication system can itself be realized on computationally limited devices
such as smartphones which can be used in everyday authentication applications.
Multi-biometric systems have demonstrated good biometric performance when face,
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periocular and iris characteristics are used as illustrated in this thesis. Simple features
like BSIF, SIFT and SURF with score level fusion is promising for the path forward
in smartphone based authentication in visible spectrum for real-life applications. The
key factor to be noted is that such multi-biometric systems can provide alternate ways
of engaging biometric authentication with no necessity for upgrades to have devices
with integrated sensors.

Despite the fact that systems are vulnerable to presentation attacks as the data
is captured in non-supervised manner on smartphones, reliable counter-measures to
detect the attacks assure security of the systems. Enhancing phase component with
video magnification approaches like EV M can be used to detect electronic screen
attacks. Texture features obtained using ST FT and AH P techniques across Laplacian
scales can achieve good results in attack detection. Based on the experimental results
in this thesis, it can be generalized that micro-texture features are highly applicable
for PAD mechanisms to detect print attack and electronic screen attacks using image
or video.

Future Works

Iris Recognition
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The set of filters learnt using deep sparse filtering in this thesis is based on the set
of natural images.

— The future works can investigate on learning the filters using domain specific data
i.e., iris image data captured using smartphones in visible spectrum to bring out
the merits as compared to filters learnt using natural images.

— Unlike the current thesis, future works can investigate on choosing best filters
from the pool of 256 filters to reduce number of features. Also, better grouping
strategies may be devised instead of sequential grouping of filter responses.

Further, as iris data obtained in visible spectrum is impacted by number of factors as
compared to data from NIR spectrum, the robust feature classification are carried out
using sparse representation in this thesis. The key challenge is the computational
expense to adapt the sparse representation on smartphones where computational
resources are limited. Future works in this direction can investigate on optimizing the
sparse representation classifier for smartphone platforms which are typically limited
in computational capacity [132].

With regard to the texture visibility of heavily pigmented iris, the LED based
illumination discussed in this thesis has provided promising results with set of
experiments on a database of 31 subjects. Future works should consider to collect
large-scale database to benchmark the performance against NIR spectrum to validate
the biometric performance of iris characteristics in visible spectrum.

The new generation of smartphones are now enabled with dual LED flash that emit
twice as much light as a single LED of the same type which results in illuminating the
subject 1.4 times further away than normal distance. The dual LED have two sources
of light with different color temperatures where one of the LED serves as ambient light
for the second LED. These features of dual LED can be explored for iris recognition in
visible spectrum, specially for unconstrained iris capture where ambient light balance
can be used to decide the intensity of illumination from other LED to obtain optimal
iris texture.

Another key work in this direction should study the quality factors for visible spectrum
iris images captured using smartphones in similar lines of earlier work [105]. The
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visibility of the texture plays vital role for iris recognition in visible spectrum, especially
when the iris are dark colored (highly pigmented). The performance should be
studied with respect to different quality of visible texture within the iris boundary.
The common problems of partially closed eye-lids due to day-light illumination and
the dilation of pupil due to uncontrolled illumination can result in low amount of
usable iris texture that can actually be used for recognition purpose. Future works
can thus establish acceptable texture, acceptable ratio of iris-pupil area and texture
quality which can thereby establish set of quality metrics for using iris captured from
smartphone embedded cameras in visible spectrum.

Periocular and Face Recognition

e The periocular recognition algorithms presented in this thesis have demonstrated
robustness to the noisy and degraded images. While a class of features based
on simple filters and distance metric have proven reliable in semi-cooperative data
capture, robust feature extractors such as deep sparse filtered features represented in
collaborative way are needed for heavily degraded data captured in harsh illumination.
Discriminant feature descriptors and robust classification schemes are necessary to
deal with heavily degraded and large scale data. Although, a strong feature descriptor
is provided in this work, the future works in this direction should focus on adapting
robust classification schemes on smartphone platforms [132]. They should implement
and optimize the collaborative classification in a light weight fashion to make the
periocular biometric systems robust in handling non-standard data.

e The challenges in using the face recognition arise from the way a particular subject
interacts with the device to capture the data in the smartphone environment which
results in partial face availability [88]. Thus, it is essential to study the biometric
performance when the face image captured in the smartphone presents partial
face and face with non-uniform illumination on a part of the face[88]. Future
works should evaluate the robust algorithms proposed for periocular region using
deep sparse filtering in this thesis for unconstrained face recognition on smartphone
platforms.

o Further, the traditional face recognition systems have used well adopted quality metrics
in automatic face recognition. When the face data is captured in a semi-cooperative
manner, acceptable quality of image can be expected. However, when the face image
is captured in unconstrained manner as in the case of smartphones, it is essential to
decide the quality of image to be used in biometrics [88]. Thus, the future work in this
direction should investigate on the quality factors for face recognition in unconstrained
data capture on smartphones to discard non-standard data or devise robust algorithms
to handle them.

Presentation Attack Detection

e Presentation attack detection in the current state-of-art techniques are tuned
specifically to different datasets with disjoint training and testing set. The success
of the techniques are largely based on learning good decision boundary by using
good features with classifiers such as SVM or SRDA. However, these classifiers
are expected to fail when an artefact other than the ones used for training the
classifier itself are presented. Thus, the future works should investigate on achieving
cross-database presentation attack detection by testing on different database than the
one used for training. Additionally, the classifiers can be extended to discriminate n
different class of artefacts to account for different attack potentials.
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e Another future work in this direction can be towards removing the dependency on
classifiers like SV M or SRDA and instead look for inherent image characteristics to
determine the attack artefacts without the explicit use of classifiers. This approach
would make the PAD mechanisms universal instead of relying on learnt classifier model.

As a closing remark, the promising and upcoming field of authentication on the
smartphones for secure applications via biometrics provides a number of opportunities.
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Appendix A

Deep Sparse Time Frequency Features for
Iris Recognition

This appendix lists the performance of Deep Sparse TimeFrequency Features for iris
recognition carried out on MICHE-I dataset and VSSIRIS database (detailed in Section 3).

A.1 Performance of DeSTiFF on MICHE-I Database

This section presents the results of DeSTiFF feature extraction on the MICHE-I iris
database and compares it to performance of Deep Sparse Flilters. In order to provide
a fair comparison, the same set of protocols are followed as mentioned in the Section 3.5.3.
The performance is listed as per the illumination and smartphone camera. Figure A.1l
presents the performance of Deep Sparse Filtering along with DeSTiFF for the images
captured using iPhone in the indoor illumination. Figure A.2 presents the performance of
two methods for the images captured using iPhone in the outdoor illumination. Similarly,
Figure A.3 and Figure A.4 present the comparative performance for images captured using
Samsung phone under indoor and outdoor illumination respectively. It can be noted from
the figures that, DeSTiF'F performs better in terms of GMR at lower FMR indicating the
superiority over the Deep Sparse Filtering method.
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Figure A.1: ROC curves obtained for various schemes applied on the iPhone images from
MICHE-I database (Indoor illumination) [34].
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Figure A.2: ROC curves obtained for various schemes applied on the iPhone images from
MICHE-I database (Outdoor illumination) [34].
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Figure A.3: ROC curves obtained for various schemes applied on the Samsung images from
MICHE-I database (Indoor illumination)[34].
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Figure A.4: ROC curves obtained for various schemes applied on the Samsung images from
MICHE-I database (Outdoor illumination) [34].
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A.2 Performance of DeSTiFF on VSSIRIS Database

This section presents the comparative performance of DeSTiF F and Deep Sparse Filters
for iris recognition in visible spectrum using VSSIRIS database [76]. We follow the protocols
mentioned in Section 3.5.4. It can be observed from Figure A.5, DeSTiF F' performs robustly
for the VSSIRIS database even at the lower FMR for images captured using both iPhone
5S and Nokia Lumia 1020 smartphones.
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Figure A.5: ROC curves obtained for various schemes applied on the VSSIRIS database
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Appendix B

Deep Sparse Time Frequency Features for
Iris Acquired Using LED

This appendix lists the performance of Deep Sparse TimeFrequency Features (DeSTiFF)
for iris recognition using the iris database captured using white-LED as detailed in Chapter 4.
We employ the images captured from 31 subjects from three different smartphones (iPhone
5S, Nokia Lumia 1020 and Samsung S4) using the proposed LED imaging set-up as
described in Chapter 4. The experimental protocols are followed as detailed in Section
4.4.1. Figure B.1 presents the verification performance of DeSTiFF compared along with
other state-of-art schemes. It can be noted that DeSTiF'F performs equally well compared
to state-of-art methods for images from iPhone and Nokia. Further, DeSTiF F outperforms
the state-of-art methods for the images captured using Samsung smartphone.
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Figure B.1: ROC curves depicting the performance of various algorithms of iris recognition for the data captured using LED based approach.
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Appendix C

Deep Sparse Filters for Periocular
Recognition

This appendix lists the performance of Deep Sparse Filters for large scale periocular
recognition carried out on VISOB database (detailed in Section 5.4.3). The protocols for
this set of experiments are detailed in Section 5.5.3.1. Figure C.1 presents the performance
of Deep Sparse Filters on all the images captured using iPhone. Similarly, Figure C.2
presents the performance of all images captured using Oppo smartphone while Figure C.3
presents performance for images captured from Samsung. The detailed comparison of the
Deep Sparse Filters with other state-of-art techniques can be obtained from [69].
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Figure C.1: ROC curves for depicting the performance of the deep sparse filters for periocular
data captured using iPhone.
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Figure C.2: ROC curves for depicting the performance of the deep sparse filters for periocular
data captured using Oppo.
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Figure C.3: ROC curves for depicting the performance of the deep sparse filters for periocular
data captured using Samsung.
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Appendix D

Deep Sparse Time Frequency Features for
Multi-biometrics (Face and Periocular)

This appendix lists the performance of Deep Sparse TimeFrequency Features (DeSTiFF)
for face recognition carried out on multi-biometric database collected using smartphone
(detailed in Section 7.3 of Chapter 7). The protocols for this set of experiments are
in-line with the protocols mentioned in Section 7.4.1. Figure D.1 presents the verification
performance of face using different schemes for the images captured using Samsung Galaxy
S5 smartphone and Samsung Note 10.1 tablet in self capture and assisted capture scenario.
Figure D.2 presents the verification performance of periocular region using the images
captured from smartphone. Similarly, Figure D.3 presents the performance of periocular
region for the images captured from tablet. It has to be noted that DeSTiFF performs
very good in lower FMR indicating the robustness of the extracted features.
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