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Abstract: With the increased deployment of biometric authentication systems, some security con-
cerns have also arisen. In particular, presentation attacks directed to the capture device pose a severe
threat. In order to prevent them, liveness features such as the blood flow can be utilised to develop
presentation attack detection (PAD) mechanisms. In this context, laser speckle contrast imaging
(LSCI) is a technology widely used in biomedical applications in order to visualise blood flow.
We therefore propose a fingerprint PAD method based on textural information extracted from pre-
processed LSCI images. Subsequently, a support vector machine is used for classification. In the
experiments conducted on a database comprising 32 different artefacts, the results show that the
proposed approach classifies correctly all bona fides. However, the LSCI technology experiences
difficulties with thin and transparent overlay attacks.
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1 Introduction

The use of biometrics has been increasing over the last few years due to its efficency,
reliability and convenience [JRN11]. As any other authentication technology, biometric
systems are also vulnerable to external attacks. In particular, an attacker may not require
further knowledge about the biometric system to deceive it. Instead, he may conduct a pre-
sentation attack (PA) by simply presenting to the biometric capture device a presentation
attack instrument (PAI), such as an artificial finger made of rubber or a fingerprint over-
lay. Hence, to ensure the integrity of the authentication process, automatic presentation
attack detection (PAD) becomes crucial. All these facts have led to an increased interest
on this research topic: public institutions have launched and funded several projects, such
as BEAT [BE12] or ODIN [OI16], and the standardisation efforts have led to the develop-
ment of the ISO/IEC IS 30107 on biometric presentation attack detection [IS16].

In this context, PAD methods have been proposed in the last decade for several biomet-
ric characteristics, including iris [GGB17], fingerprint [SB14], or face [GMF14]. For fin-
gerprints, Hengfoss et al. analysed extensively the multi-spectral signatures of the living
against cadaver fingers using spectroscopy techniques [He11]. More recently, three meth-
ods based on pulse, pressure, and illumination with different wavelengths were presented
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in [Dr13], where 2% of the bona fide samples and 10% PA samples are miss-classified.
Furthermore, the authors noted that some skin diseases have a negative influence on PAD
based on liveness measurements.

Other fingerprint PAD approaches build upon conventional capture devices. However, as
any other pattern recognition task, PAD can benefit from complementary sources of infor-
mation. For instance, laser speckle contrast imaging (LSCI) is typically used in biomedi-
cal applications as a tool for imaging and monitoring microvascular blood flow in different
kinds of biological tissues, such as skin and retina, or in neuroscience [Va16, Se13]. There-
fore, it can be useful for PAD purposes, in order to measure whether there is blood flow in
the presented characteristic.

Within the biometrics community, however, LSCI is not yet widely used. Among the very
few examples, retinal scanning based on LSCI data is proposed in [SC16]. The retinal
LSCI images provide a blood flow profile, which is compared to the vasculature pattern
of the retina. If the regions of flow match the retinal vasculature pattern, the sample is
classified as bona fide. However, no PAs were considered in [SC16].

This work presents, to the best of our knowledge, the first approach to use LSCI for finger-
print PAD. A sensor to acquire the laser speckle images from the finger is described, which
has been designed within the ODIN program [OI16]. We then present the implementation
of the corresponding pre-processing techniques to extract the LSCI images. Textural in-
formation is subsequently extracted from the LSCI images, and classification is carried
out with support vector machines (SVMs). Therefore, the proposed technique is efficient
and can be implemented on real time applications. In addition, two fusion schemes for the
different features extracted have been analysed. We have tested a collection of 32 different
PAI species, including both complete thick fake fingers and more challenging overlays.
Most of the PAIs were correctly detected.

The rest of the paper is organised as follows. Sect. 2 explains the core concepts of LSCI.
The proposed PAD method is described in Sect. 3. Sect. 4 summarises the experimental
evaluation carried out and final conclusions are drawn in Sect. 5.

2 Laser Speckle Contrast Imaging (LSCI)

When coherent light (i.e. laser light) is reflected by a sufficiently rough surface, the light
is scattered, and a granular pattern of dark and bright spots occurs. This is called a speckle
pattern, which results from a random interference pattern: the scattered coherent light
waves either add up, resulting in bright spots, or cancel out, resulting in dark spots [Se13].
For many laser applications, this effect is considered noise, and various techniques were
developed to reduce the laser speckle effect [Va16].

It was Goodman who attempted to statistically quantify the speckle effects [Go75]. This al-
lowed the measurement of, for instance, surface roughness or surface temperature [Pe92].
Furthermore, laser light has a certain penetration depth, and if moving scatterers are present
(i.e. blood) the speckle pattern will change over time [Va16]. Therefore, speckle patterns
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can be used to characterise motion of objects or relative flow of particles in a medium
[DK08].

If the aforementioned patterns are captured with a camera, the term laser speckle contrast
imaging (LSCI) [Va16] is used. Depending on the degree of motion and camera parameters
like exposure time, moving areas will appear blurred in the laser speckle image. The degree
of blurring is called speckle contrast and is also one of the major characteristics of the laser
speckle phenomenon. Goodman showed that, in perfect conditions, the standard deviation
of the speckle pattern is equal to its mean intensity [Go75]. Following this idea, the speckle
contrast K is defined as the ratio between the standard deviation (σ ) and the mean intensity
(〈I〉):

K =
σ

〈I〉
(1)

The contrasting neighbourhood can be analysed either in the spatial (Ks) or in the temporal
(Kt) domain. To calculate the spatial speckle contrast, a window (e.g., of size 3×3) iterates
over the laser speckle images and calculates the contrast for each pixel. The temporal
approach uses multiple laser speckle images to see how a single pixel changes over time.
It is important to note that temporal contrast reduces temporal resolution, while spatial
contrast reduces spatial resolution. Therefore, the best approach depends on the application
context (i.e., which dimension is more important to preserve) [Va16].

3 Presentation Attack Detection Method

Our PAD approach based on LSCI consists of three basic steps: pre-processing, feature
extraction, and classification. Each step is described in the following sections.

3.1 Image Acquisition and Pre-Processing

The finger LSCI sensor was developed within the BATL project [BA17] of the ODIN
program [OI16], in conjunction with our partners at TREX Enterprises and the University
of South California. In particular, a Hamamatsu InGaAs area image sensor G11097-0606S,
which operates at a wavelength of 1310 nm at an exposure time of 1 ms, is used to capture
the LSCI data. This setup delivers 1000 laser speckle images per second, each of size
64× 64 pixels. The laser used to illuminate the finger samples is an Eblana Photonics
EP1310-ADF-B laser diode.

As mentioned above, the images delivered have a resolution of only 64×64 pixels. There-
fore, it is more important to preserve the spatial resolution, and accept a loss of temporal
resolution. After an exhaustive analysis of both spatial and temporal contrast calculation
methods [BD10, Se13, SC16, Va16], the temporal approach with a neighbourhood of 25
consecutive laser speckle images was chosen. It is important to note that in the temporal
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Fig. 1: Pre-processing to obtain a LSCI image out of a stack of 1000 laser speckle images. The
averaged LSCI image is the basis for the subsequent steps, i.e. feature extraction and classification.
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Fig. 2: Examples of averaged LSCI images of bona fide and PA samples. The corresponding
greyscale histograms are shown in the second row, where the red vertical line represents the highest
peak and the green line the pre-selection decision threshold (see Sect. 3.4).

domain, if no motion is present, the pixel will appear with approximately the same inten-
sity along several images, leading to a low σ , and therefore a low Kt (see Eq. 1). On the
other hand, if motion is present, the same pixel will appear with different intensities along
several images, leading to high σ , and therefore a high Kt [Va16].

As illustrated in Fig. 1, LSCI images are calculated over the selected temporal neighbour-
hood of 25 consecutive laser speckle images from the initial 1000 laser speckle images,
thus resulting in 40 LSCI images. In order to put all the information in a single LSCI im-
age, the next step is to average the intermediate 40 LSCI images into a single one. Fig. 2
shows a selection of averaged LSCI images of a bona fide and several PAIs.

3.2 Feature Extraction

As explained in Sect. 2, for the temporal LSCI calculation, a low Kt indicates no motion,
whereas a high Kt indicates motion, and hence blood flow. Thus, greyscale values of the
averaged LSCI images are a direct representation of motion. This is shown in Fig. 2, where
PAIs yield darker LSCI images and thus histograms with heavier left tails, whereas the
bona fide sample produces a brighter LSCI image and a heavier right tail in the histogram.

In addition to greyscale values, a deeper analysis of the averaged LSCI images of Fig. 2
reveals texture information in them. Whereas bona fide samples have a smooth texture,
which stems from the biological tissue, materials like silicone, silly putty, or urethane
have a rough and stained texture.
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Fig. 3: Features extracted from each averaged LSCI image, namely: i) greyscale histogram, ii) BSIF,
iii) HOG, iv) and LBP descriptors.

Taking both facts into account, both greyscale and texture information will be extracted
from the LSCI images, as it is depicted in Fig. 3. The former will be represented with
256-bin histograms. On the other hand, the well-known Local Binary Pattern (LBP) and
Binarized Statistical Image Features (BSIF) texture descriptors [FWW15] have been cho-
sen, since they have showed a higher performance in comparative evaluations [Gh17] with
respect to other measures. Finally, based in the observation that veins are only present in
bona fide samples, as a contrasted line with no pre-defined shape but an approximately hor-
izontal direction, these will be detected with the Histogram of Oriented Gradients (HOG)
descriptor [FWW15].

3.3 Single Classification

Being PAD a binary decision between the bona fide (class 0) and PA (class 1) classes,
SVMs are an appropriate choice for a classifier [St17]. For each feature descriptor (i.e.,
histogram, LBP, HOG, BSIF), a separate SVM was trained and tested.

In addition, the sensor captures three LSCI images per sample (see Fig. 4). This allows
us to implement a more robust PAD method, since the final decision relies on the three
LSCI images. In particular, for each of the three LSCI images of a given sample, the SVM
returns the estimated class ri with i = 1,2,3, as indicated in Fig. 4. Subsequently, the final
decision for the given sample is reached by a majority voting of the result tuple:

rsample = majority(r1,r2,r3) (2)
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Fig. 4: Data acquisition for a single finger sample, where 3 LSCI images are captured. The individual
decisions ri for each image are fused with a majority vote rule: rsample = majority(r1,r2,r3).

3.4 Fused Classification

In order to fuse the information yielded by each extracted feature described in Sect. 3.2,
two different approaches have been considered, as shown in Fig. 5. In both cases, and
in order to filter obvious PAs, a pre-selection PAD based on the following observation is
carried out: the greyscale histograms of the LSCI images in Fig. 2 show an obvious peak
bin (highlighted with a red vertical line), located at different positions for bona fides and
PAs. Therefore, we will compare the peak bin of the histogram against a threshold (shown
in green): if it is lower than the threshold, the samples is classified as PA, and otherwise
further processing will start. In order to avoid a misclassification of bona fide samples, we
recommend a low threshold such as the one depicted in green in Fig. 2.

After the pre-selection step, the cascade PAD (Fig. 5a) focuses on time efficiency. After
each feature extraction process, ordered from the simplest to the most complex, a decision
can be made: if the sample is classified as PA, that is the final decision. Otherwise, the next
feature extraction algorithm is executed.

Another alternative is to predict the class by the majority of the single results, as shown
in Fig. 5b. In this case, if no PA was detected at pre-selection, the sample is subsequently
tested against the remaining PAD features. The final result is determined by the majority
of these individual single results (i.e., histogram, LBP and HOG).

4 Experimental Evaluation

4.1 Dataset and Experimental Setup

The dataset was acquired at the University of South California within the BATL project
[BA17] of the ODIN program [OI16]. It comprises 545 bona fide samples and 225 PA
samples, stemming from 32 different PAIs (e.g., overlays fabricated with dragonskin, latex,
school glue, or urethane, thick fingers made with several colours of play doh and wax or 3D
prints, and the corresponding variations coated with conductive paint). Bona fide samples
were captured from all five fingers of the right hand from 163 participants, and PAIs were
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Fig. 5: Fused PAD methods, based on (a) a cascade decision and (b) an initial pre-selection based
on the histogram features and a majority voting of the remaining features.

# Samples # Attack
samples

# Bona fide
samples

Training set 136 70 (51%) 66 (49%)
Test set 634 155 (24%) 479 (76%)

Tab. 1: Partition of training and test data.

also applied to all fingers. Subsequently, the data was manually checked and bad quality
samples (i.e., due to finger motion) were excluded.

For each of the total 770 samples, laser speckle images were acquired from three con-
tiguous areas, moving from the fingertip leftwards (see Fig. 4), thus resulting in a total
of 770 · 3 = 2310 LSCI images. The data was split into disjoint training and test sets as
shown in Table 1, using a similar number of each class for training to avoid bias towards
one class. In a first step, cross validation was conducted to find the best parameters for the
SVM. It should be also noted that, in order to establish a fair benchmark of the results, the
same training and test data were used for each SVM.

The test results are evaluated in compliance with the ISO/IEC 30107-3 on Biometric pre-
sentation attack detection - testing and reporting [IS17]. To that end, the following metrics
are used: i) Attack Presentation Classification Error Rate (APCER), or percentage of attack
presentations wrongly classified as bona fide presentations; and ii) Bona Fide Presentation
Classification Error Rate (BPCER), or percentage of bona fide presentations wrongly clas-
sified as presentation attacks.
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Histogram LBP HOG BSIF Pre-selection Cascade Majority Vote

APCER (%) 30.97 16.77 12.90 18.06 27.10 10.97 15.48
BPCER (%) 0.21 0.42 0.63 2.71 0.21 0.84 0.21

Tab. 2: Test results of the implemented PAD methods.

4.2 Results and Discussion

The test results for each of the feature descriptors (i.e., histogram, LBP, HOG, BSIF) are
presented in Table 2. As it may be observed, the histogram features achieve the lowest
BPCER (0.21%). However, they yield the highest APCER (30.97%). On the other hand,
the more complex texture descriptors achieve a better balance between both error rates:
while LBP and HOG have a similarly low BPCER (0.42% and 0.63%), they achieve a
much lower APCER (16.77% and 12.90%) than the histogram features. Finally, BSIF
performs worse than the last two descriptors (BPCER = 2.71% and APCER = 18.06%).
Hence, BSIF is excluded from the fused approaches described in Sect. 3.4 and Fig. 5.

A deeper analysis of the APCEs shows that most of them stem from thin and transparent
overlays (i.e. dragonskin). In more detail, the percentage of APCEs derived from these
overlays ranges from 77% for the histogram features to 96% for LBP. The reason behind
these errors lies on the fact that LSCI analyses the blood flow, and this is still visible
through these overlays (see Fig. 2).

In order to further improve the results, we have also considered the fused PAD described
in Sect 3.4. The results of these fused methods are also shown in Table 2. As it may be
observed, the cascade PAD reduces the APCER, because PAs are filtered in each step,
and only a PA that passes all single PAD methods will be wrongly classified as a bona
fide. From the same reasoning follows an increase on the BPCER until 0.84%. On the
other hand, the majority voting PAD provides a low and robust BPCER of 0.21%, which
is equivalent to one error in the test set. Furthermore, an analysis of the LSCI images of
this misclassified sample shows that it is of poor quality, most probably caused by a failure
in the capturing process. Finally, with an APCER of 15.48%, the APCER of the majority
PAD is not as low as with cascade PAD, but the second lowest of the combined PAD
methods.

5 Conclusion

We have proposed a PAD approach for fingerprints based on LSCI, a technology capable
of visualising blood flow. Four different types of features (i.e., histograms, LBP, HOG, and
BSIF) are extracted from the LSCI images and classified with SVMs. In addition to the
individual decisions for each feature set, we have analysed two different fusion schemes
in order to achieve a more robust PAD method.

Our experiments on a database comprising 32 different PAIs show that LSCI achieves
remarkable results for PAD purposes. In particular, the majority voting fusion achieves a
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BPCER as low as 0.21%, which is equivalent to one misclassified bona fide presentation.
At the same time, an APCER of 15.48% shows the main limitation of LSCI for PAD
purposes: it is not capable of detecting thin and transparent overlays, like dragonskin.

Our future work will focus on a rigorous analysis of machine learning techniques, in order
to find the best classifier or SVM parameters, and a larger database collection. Further-
more, besides greyscale and texture information, motion descriptors will be researched,
since LSCI contains motion information.
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