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Abstract—Fingerprint alteration is a type of presentation
attack in which the attacker strives to avoid identification, e.g. at
border control or in forensic investigations. As a countermeasure,
fingerprint alteration detection aims to automatically discover
the occurrence of such attacks by classifying fingerprint images
as ’normal’ or ’altered’. In this paper, we propose four new
features for improving the performance of fingerprint alteration
detection modules. We evaluate the usefulness of these features
on a benchmark and compare them to four existing features from
the literature.

I. INTRODUCTION

In the last five years fingerprint recognition as a well
established biometric method has demonstrated its potential
to construct large scale Automated Fingerprint Identification
Systems (AFIS). The Unique Identification Authority of India
has already granted an unique AADHAAR number to more
than 700 million citizens. The system is designed to provide
biometric access to services such as financial transactions and
will eventually support 1.2 billion enrollees [1]. In 2011 the
European Visa Information System (VIS) was implemented
and became operational for all countries in the Schengen area
as a distributed system [2]. Again this system will scale up to
several hundred million enrollees. The purpose of the VIS is
to control during the visa application process that the applicant
has no criminal track record and also to verify at the border
that the visa holder is eventually the same subject as the one
who received the visa at the embassy. While the biometric
performance of these systems is impressive and de-duplication
can be conducted at low error rates, system operators must
consider that there will be a certain fraction of individuals who
will try to avoid detection. In both scenarios an individual will
not be enroled in the system, if the biometric probe sample cap-
tured from the individual matches with a biometric reference
already registered in a database, or watch-list. Consequently,
for negative biometric claims a situation can arise where an
individual will alter his fingerprint patterns thus minimizing
the chance of detection. Detecting altered fingerprints is a
relevant task in border control scenarios, identity management
applications relying on a one-to-one relationship between an
individual and identification number and in forensic investi-
gations. Criminals or certain other individuals might want to
avoid being identified in a watch list or in a database of a
law enforcement agency and thus they alter their fingerprint
pattern temporarily or permanently. Blacklisted individuals
can alter their fingerprint patterns by abrading, cutting or
burning their fingerprints. Dedicated surgeries using a Z-
shaped cut have been developed, to switch partial skin areas

Fig. 1. Fingerprint alteration example. Gus Winkler changed in 1933 his
left middle finger intentionally from whorl to loop with the aim of confusing
identification. Image source: [3].

of the fingerprint pattern and consequently render fingerprint
comparison algorithms helpless. Fingerprint alterations are a
type of presentation attack [4], [5] on biometric systems. These
attacks are known as a security risk since 1934, when the
murderer John Dillinger tried to avoid identification and burned
his fingerprints for this purpose [3]. Around the same time the
bank robber Gus Winkler changed the fingerprint pattern of his
left middle finger intentionally from whorl to loop with the aim
of confusing identification [3] as illustrated in Figure 1.

However, while the security risk associated with altered
fingerprints has been known for a long time, the problem has
received little attention from the research community so far.
To some degree, this can be explained by the lack of publicly
available databases. Realistic data sets to verify the efficiency
of alteration detection methods can only be composed through
long-term collection by forensic agencies. Only a small num-
ber of alteration detection approaches have been proposed so
far. In 2010 Petrovici and Lazar have suggested to analyze the
reliability of the orientation field as an indicator for alterations
[6]. Due to lack of testing data, the method has not been
thoroughly evaluated. Yoon and Jain proposed a method that
seeks anomalies in the orientation field and features minutia
distributions, which are increasing in the presence of scars
[7]. The authors were the first to test their method though
on a non-public governmental database of several thousand
altered fingerprints and reported a correct detection rate of 66%
at a false positive rate of 0.3% [7]. Recently Ellingsgaard et



Fig. 2. Examples of two unaltered (left, image source: FVC2004) and three altered (right, image source: NIST SD14) fingerprints [8].

al. proposed a method based on the analysis of anomalies in
minutia orientations and the fingerprint ridge structure caused
by scarred regions [8], which was evaluated on a much smaller
semi-public dataset consisting of 116 altered fingerprints.

II. PROPOSED METHOD

All fingerprint images have been preprocessed using the
factorized directional bandpass (FDB) method [9]. First, the
region of interest (ROI) has been estimated by the FDB
method and next, images have been automatically adjusted
by removing all rows and all columns which contain only
background pixels. A visual inspection has been performed to
ensure that the automatic preprocessing by the FDB method
lead to proper ROIs for all images. Next, we describe four
features which we propose for improving fingerprint alteration
detection.

A. Proposed Features

DOFTS Mutilation of ridge pattern is one of the main
properties of altered fingerprints and therefore, it is natural to
use a feature which describes ridge information for alteration
detection. We suggest as feature essentially a difference of
orientation maps obtained with the complex version of the
Structure Tensor [10]. This is represented as a complex vector
which is similar to ordinary structure tensor but decomposes
the image into two meaningful scalars, one being (complex)
orientation and the other being (real) contrast energy used in
estimation
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and f being an image. The parameters σin and σout define the
inner and the outer scales of the structure tensor.

The contrast energy I11 is used to normalize the orientation
estimations IL20 = I20/I11, with |IL20| ≤ 1. These orientation
maps are dense and complex valued. It is important to note,
that the angular part of the complex valued IL20 is twice
the (gradient) direction angle eliminating discontinuities when
representing the direction of a line.

Recently, a frequency map estimation has been suggested
[12]. In combination with orientation maps above it is used to
enhance the image and then reestimate both the orientation and
the frequency maps iteratively. This improves the estimated
orientation maps. At each iteration a different IL20 is obtained,

called IL(1)20 , IL(2)20 , etc. Each iteration smooths the orientation
map non-linearly. Here we have used 2 iterations and the
difference of orientations ∠IL(2)20 −∠IL(1)20 has been used as a
feature to detect altered fingerprints.

The I
L(1)
20 and I

L(2)
20 have different inner scales through

which authentic fingerprint regions obtain similar values and
get suppressed in difference computations (similar to e.g. [11])
whereas the altered regions do not. We call the feature Differ-
entials of Orientation Fields by Tensors in Scale (DOFTS).

HIG Histograms of invariant gradients (HIG) [13] also take
the orientation field into account and image gradient directions
are computed relative to the local orientation. For normal
fingerprints, the majority of gradients form an angle of ap-
proximately 90 degrees with the local orientation. Alterations
of the fingerprint ridge structure change the image gradients in
the altered regions and histograms of invariant gradients aim
to capture these changes. The HIG descriptor is computed as
follows.

First, we compute image gradients for each foreground
pixel using the Sobel operator. Second, we estimate the local
orientation by averaging squared gradients in window of size
41 pixels. This corresponds to a coarse approximation of IL20.
Third, we obtain an invariant gradient representation by com-
puting the unsigned gradient direction relative to the estimated
local orientation. Gradients are sorted into bins based on the
relative gradient direction by adding gradient magnitudes to the
corresponding bins. Finally, we perform L2-normalization on
the histogram. In doing so, we obtain a single HIG descriptor
with 180 bins for each fingerprint image.

COH Additionally, we propose the coherence (COH) of gra-
dients as a feature for alteration detection. The coherence
measures to what degree the squared gradients in a local
neighborhood have a similar orientation. A high similarity of
orientations corresponds to a high coherence which is typical
for good quality regions in natural fingerprints. Alterations as
depicted in Figure 1 and 2 cause areas of very low coherence
in the altered regions.

The previously computed image gradients by the Sobel
operator are reused for calculating the local coherence of
gradients as described in [14]. More precisely, gradients are
weighted by a 2D-Gaussian with σ = 8 in a window of size
33 pixels. The whole foreground image is divided into 3 × 3
cells, and for each cell, a histogram with 21 equidistant bins
(covering the interval of coherence values from 0 to 1) is
extracted.



Abbreviation Description
MDA Minutia distribution analysis [7]
OFA Orientation field analysis [7]

SPDA Singular point density analysis [8]
MOA Minutia orientation analysis [8]

Differentials of orientation fieldsDOFTS
by tensors in scale [12]

HIG Histograms of invariant gradients [13]
COH Coherence of gradients [14]
MH Minutiae Histograms [15]

TABLE I. OVERVIEW OVER THE FEATURES APPLIED FOR ALTERATION
DETECTION. THE FIRST FOUR FEATURES ARE KNOWN FROM THE

LITERATURE, THE LAST FOUR FEATURES ARE NEW IN THE CONTEXT OF
FINGERPRINT ALTERATION DETECTION.

MH Minutiae histograms (MH) [15] have been introduced
to differentiate between images of real fingers and artificially
generated fingerprint images using the earth mover’s distance
[16]. For each fingerprint, we compute a 10 × 10 minutiae
histogram (MH) [15]. All minutiae pairs are sorted into one of
10 bins for the Euclidean distance between minutiae locations
(0 to 200 pixels, first dimension) and one of 10 bins for the
directional difference between minutiae directions (0 to 180◦,
second dimension). Finally, the sum of all entries is normalized
to a total mass of 1.

B. Alteration Score

DOFTS and COH output images which are divided into
3 × 3 cells. For each cell, we compute a histogram with 21
equidistant bins. In summary, feature vector sizes are 189 for
DOFTS and COH, 180 for HIG and 100 for MH.

Experiments have been performed using LIBSVM [17]
with a linear kernel (C = 1) and regression to obtain an
alteration score between 0 and 1 for all features and all images,
where 0 corresponds to natural fingerprints and 1 to altered
fingerprints.

III. PAD METRICS, DATABASE ANS RESULTS

International standards to measure biometric performance
of fingerprint recognition are well established with ISO/IEC
19795-1 [18] and define in which way algorithm errors such
as false-match-rate (FMR) and false-non-match-rate (FNMR)
must be reported.

Unfortunately, for testing presentation attack detection such
established concepts did not exist in the past. ISO/IEC has
recently started to work on a standard covering presentation at-
tack detection and metrics to report the efficiency of fingerprint
alteration detection methods to counter subversive attacks. The
standardization project ISO/IEC 30107 Biometric presentation
attack detection is providing a harmonized definition of terms
related to attack techniques [5], as well as testing methods that
can measure robustness against said attacks [19].

In analogy to biometric performance the metrics specified
for alteration detection are given by the false-positive normal
presentation classification error rate (NPCER), which is de-
fined as proportion of normal presentations incorrectly classi-
fied as attack presentations, and on the other hand by the false-
negative attack presentation classification error rate (APCER),
which is defined as proportion of attack presentations incor-
rectly classified as normal presentations. A challenge in this

definition is that unlike for biometric performance testing a
large corpus of testing samples can not be assumed to be
available.

In this work we have used the same limited dataset from
[8], however in order to avoid any impact of background area
on the performance, all images were pre-segmented by the
FDB method [9]. In total 116 altered fingerprint images and
180 unaltered, normal fingerprint images were used. In order
to cope with the limited size of this dataset we performed
cross-validation by splitting the dataset 100 times into training
set and test set. Each training set comprises 80 altered and
80 unaltered images, which are chosen independently and
uniformly at random. The remaining 36 altered and 100
unaltered images build the test set.

A comparison of the alteration detection performance for
the four existing and the four novel features in terms of
detection error trade-off (DET) curves is depicted in Figure 3.
Of special interest for practical applications in a border control
scenario is the comparison of performance at the left margin
of Figure 3. Low false alarm rates (NPCERs) are a desirable
property for a fingerprint alteration detection module, because
higher NPCERs would entail a larger number of manual
inspections of fingerprints by human experts resulting in higher
costs for personnel or a decreased throughput speed of border
crossings.

IV. DISCUSSION AND CONCLUSION

The four best performing features so far are OFA [7],
DOFTS [12], COH [14] and SPDA [8]. The two best per-
forming features OFA and DOFTS are based on differences
between orientation fields. The coherence of gradients (COH)
and singular point density analysis (SPDA) are also connected
to the orientation field, because singular points are estimated
from OFs. We conclude that orientation fields contain a high
amount of information which is useful for detecting altered
fingerprints. An advantage of the HIG descriptor [13] is that it
can be computed very fast (in a few milliseconds per image)
and it contributes to both alteration detection and liveness
detection. The three features MDA, MOA and MH use the
minutiae template as input. Out of these three, minutiae his-
tograms (MH) [15] performs best at a NPCER of 1%. Minutiae
histograms [15] are useful for detecting unnatural minutiae
configurations which can be caused by fingerprint alteration or
a presentation attack with a synthetically generated fingerprint
image.

In summary, we have proposed four new features for
fingerprint alteration detection. Two of these are among the
three best performing features on the considered benchmark
at a NPCER of 1% which is of special relevance for prac-
tical applications in border control. As future work we plan
to investigate additional features, e.g. ridge frequency maps
obtained by the structure tensor [12] or by curved regions [20].
Orientation maps obtained by the structure tensor are complex
valued with angular information representing orientation and
magnitude defining reliability. In this paper we have utilized
the angular information only leaving space for improvement
by incorporating the magnitude in future works. Moreover,
we plan to explore feature-level or score-level fusion between
two or more features. We intend to analyze to which degree



Fig. 3. Detection error trade-off curves comparing the alteration detection performance for the features listed in Table I. Results are averaged APCERs at
corresponding NPCERs (from 0% to 100% in steps of 1%) averaged over 100 random splits of the dataset into training and test sets.

features are complementary with simultaneous consideration of
potential synergy effects between fingerprint alteration detec-
tion and other processing modules e.g. for image enhancement
or liveness detection.

ACKNOWLEDGEMENTS

This work is carried out under the funding of the
EU-FP7 INGRESS project (Grant No. SEC-2012-312792).
C. Gottschlich also acknowledges the support of the Felix-
Bernstein-Institute for Mathematical Statistics in the Bio-
sciences and the Niedersachsen Vorab of the Volkswagen
Foundation.

REFERENCES

[1] UIDAI, “Role of biometric technology in aadhaar enrollment,” Unique
Identification Authority of India, New Dehli, India, Tech. Rep., Jan.
2012.

[2] European Council, “Regulation (EC) No 767/2008 of the European
Parliament and of the Council of 9 July 2008 concerning the Visa
Information System (VIS) and the exchange of data between Member
States on short-stay visas (VIS Regulation),” Jul. 2008.

[3] H. Cummins, “Attempts to alter and obliterate finger-prints,” Journal of
Criminal Law and Criminology, vol. 25, pp. 982–991, May 1935.

[4] C. Sousedik and C. Busch, “Presentation attack detection methods for
fingerprint recognition systems: a survey,” IET Biometrics, vol. 3, no. 4,
pp. 219–233, Dec. 2014.

[5] ISO/IEC JTC1 SC37 Biometrics, ISO/IEC DIS 30107-1. Information
Technology - Biometric presentation attack detection - Part 1: Frame-
work, International Organization for Standardization, 2015.

[6] A. Petrovici and C. Lazar, “Identifying fingerprint alteration using the
reliability map of the orientation field,” The Annals of the University of
Craiova. Series: Automation, Computers, Electronics and Mechatronics,
vol. 7(34), no. 1, pp. 45–52, 2010.

[7] S. Yoon, J. Feng, and A. Jain, “Altered fingerprints: Analysis and detec-
tion,” IEEE Transactions on Pattern Analysis and Machine Intelligence,
vol. 34, no. 3, pp. 451–464, Mar. 2012.

[8] J. Ellingsgaard, C. Sousedik, and C. Busch, “Detecting fingerprint
alterations by orientation field and minutiae orientation analysis,” in
Proc. IWBF, Valletta, Malta, Mar. 2014, pp. 1–6.

[9] D. Thai, S. Huckemann, and C. Gottschlich, “Filter design
and performance evaluation for fingerprint image segmentation,”
arXiv:1501.02113 [cs.CV], Jan. 2015.

[10] J. Bigun, Vision with direction. Berlin, Germany: Springer, 2006.
[11] A. Mikaelyan and J. Bigun, “Symmetry assessment by finite expansion:

application to forensic fingerprints,” in Proc. BIOSIG, Darmstadt,
Germany, Sep. 2014, pp. 75–86.

[12] J. Bigun and A. Mikaelyan, “Dense frequency maps by structure
tensor and logarithmic scale space: application to forensic fingerprints,”
submitted.

[13] C. Gottschlich, E. Marasco, A. Yang, and B. Cukic, “Fingerprint
liveness detection based on histograms of invariant gradients,” in Proc.
IJCB, Clearwater, FL, USA, Sep. 2014, pp. 1–7.

[14] C. Gottschlich and C.-B. Schönlieb, “Oriented diffusion filtering for
enhancing low-quality fingerprint images,” IET Biometrics, vol. 1, no. 2,
pp. 105–113, Jun. 2012.

[15] C. Gottschlich and S. Huckemann, “Separating the real from the
synthetic: Minutiae histograms as fingerprints of fingerprints,” IET
Biometrics, vol. 3, no. 4, pp. 291–301, Dec. 2014.

[16] C. Gottschlich and D. Schuhmacher, “The shortlist method for fast
computation of the earth mover’s distance and finding optimal solutions
to transportation problems,” PLoS ONE, vol. 9, no. 10, p. e110214, Oct.
2014.

[17] C.-C. Chang and C.-J. Lin, “LIBSVM : a library for support vector
machines,” ACM Transactions on Intelligent Systems and Technology,
vol. 2, no. 3, pp. 1–27, Apr. 2011.

[18] ISO/IEC TC JTC1 SC37 Biometrics, ISO/IEC 19795-1:2006. Infor-
mation Technology – Biometric Performance Testing and Reporting
– Part 1: Principles and Framework, International Organization for
Standardization and International Electrotechnical Committee, Mar.
2006.

[19] ISO/IEC JTC1 SC37 Biometrics, ISO/IEC CD 30107-3. Information
Technology - Biometric presentation attack detection - Part 3: Testing
and Reporting, International Organization for Standardization, 2015.

[20] C. Gottschlich, “Curved-region-based ridge frequency estimation and
curved Gabor filters for fingerprint image enhancement,” IEEE Trans-
actions on Image Processing, vol. 21, no. 4, pp. 2220–2227, Apr. 2012.


