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Abstract: Morphing techniques can be used to create artificial biometric samples or templates, which resemble the biometric
information of two or more individuals in signal and feature domain. If morphed biometric samples or templates are infiltrated
to a biometric recognition system, the subjects contributing to the morphed sample can be both successfully verified against a
single enrolled template. Hence, the unique link between individuals and their biometric reference data is not warranted. This
leads to serious security gaps in biometric applications, in particular the issuance and verification process of electronic travel doc-
uments. Recently, different biometric systems have been attacked using morphed biometric samples. However, so far a systematic
approach to predict the vulnerability of the system to such attacks has not been proposed.
In this work, we present a framework to evaluate the vulnerability of biometric systems to attacks using morphed biometric infor-
mation. Based on a biometric system’s mated/non-mated score distributions and its decision threshold, a theoretical vulnerability
assessment is proposed. In an experimental evaluation, the vulnerability of a face and an iris recognition system is quantified
based on the presented framework. Obtained results are verified against real attacks based on morphed face images and morphed
iris-based templates.

1 Introduction

Biometrics refers to the automated recognition of individuals based
on their biological and behavioural characteristics [1]. Nowadays,
biometric technologies represent an integral component of identity
management and access control systems, providing a strong and per-
manent link between individuals and their identity. In past years,
researchers have pointed out diverse potential vulnerabilities of bio-
metric recognition systems. Proposed attacks, which aim at gaining
unauthorized access to the system, can be coarsely categorized into
presentation attacks and software-based attacks [2]. Presentation
attacks refer to a presentation of an attack instrument (e.g. print outs
or electronic displays [3]) to the biometric sensor with the goal of
interfering with the operation of the biometric recognition system
[4]. To launch software attacks, e.g., substitution attacks or over-
riding one of the inner modules of the system, an attacker requires
knowledge about the interior architecture of the biometric system
together with access to some of the system components.

Recently, attacks on face, fingerprint and iris recognition sys-
tems based on morphed biometric images and templates have been
presented [5–9]. Morphed biometric information is an artificially
generated sample or template, which blends the biometric infor-
mation of two different data subjects into one. If such a morphed
information is infiltrated into a biometric system at the time of
enrolment, there is a high chance that the data subjects contribut-
ing to the morphed sample or template are successfully verified
against it employing state-of-the-art recognition systems, i.e. the
desired unique link between subject and the template is annulled.
Fig. 1 shows the diagram of such an attack for face in the image
domain, which is carried out in the following four steps: (1) the
attacker finds an accomplice, whose biometric characteristic is simi-
lar enough to his own; (2) their characteristics are captured resulting
in the biometric samples Mac and Mat , respectively; (3) a morphed
sample Mmorph is created from the original unaltered samples of
the accomplice and the attacker, Mac and Mat ; (4) the morphed
sample Mmorph is presented to the system, and its corresponding
template Tmorph is enrolled in the database. Later on, both the
attacker and the accomplice can present their unaltered biometric

characteristics to the biometric system, and the samples M′at and
M′ac are captured, which will yield the corresponding templates T′at
and T′ac. The attack will be successful if both templates obtain sim-
ilarity scores with respect to the enrolled morphed template higher
than the decision threshold, δ:

sat = S(T′at,Tmorph ) > δ ∧ sac = S(T′ac,Tmorph ) > δ (1)

where S outputs the similarity score between two templates com-
puted by the biometric system. Hence, an attack attempt is consid-
ered successful if min(sat, sac) > δ.

Such attacks pose severe security threats to biometric systems, in
particular to the issuance and verification process of electronic travel
documents [5]: black-listed criminal offenders can use an authentic
passport, complying with all physical document security features, to
enter a country with the identity of an accomplice, when performing
three basic steps: (1) find a rather lookalike accomplice, (2) morph
passport face photos of both, possibly utilizing free software avail-
able on the internet, and (3) the accomplice applies for a passport.
The passport manufacturer will issue an authentic passport equipped
with the morphed biometric information and other identity attributes
of the accomplice, which can be used to enter a country by both
subjects. It should be noted, that the accomplice needs to cooperate
with the attacker in order to apply for the valid passport containing
his biographic data and the morphed biometric sample.

Different commercial face recognition systems have been found
to be highly vulnerable to this type of attack [5]. Due to a high
intra-class variability in human faces, face recognition systems are
operated at false match rates (FMRs) as high as 0.1% to achieve
acceptable false non-match rates (FNMRs). At such big FMRs, the
chance that different subjects exhibit similar biometric features or
even yield a biometric collision, becomes alarmingly high even for
a rather small number of registered subjects. That is, it is expected
to be straightforward for an attacker to find a suitable accomplice.
Apart from relatively high FMRs, it is of particular interest what
makes a biometric system potentially vulnerable to attacks based on
morphed biometric information. Ideally, such an assessment should
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Fig. 1: An attack based on morphed facial images: at enrolment Mat and Mac are morphed into Mmorph , and template Tmorph is enrolled
in the database. During verification, when either probe sample M′at and M′ac is presented to the system, their corresponding templates achieve
similarity scores sac = S

(
T′ac ,Tmorph

)
(resp. at), higher than the decision threshold δ.

be based on biometric systems’ key factors without the need of
conducting specific attacks.

1.1 Contribution of Work

In this work we propose a theoretical framework for predicting the
vulnerability of biometric systems to attacks based on morphed bio-
metric information, which extends the framework introduced in [10].
It allows an assessment of the impact of said attacks for differ-
ent operating points of biometric systems, i.e., decision thresholds
δ. This evaluation is based on the relationship between mated and
non-mated score distributions. Hence, it only requires the compu-
tations of the mated and non-mated scores of unaltered biometric
samples, which is always necessary to fix the decision threshold of
the system. In contrast to the framework presented in [10], in which
the vulnerability assessment is based on the entire shape of score
distributions, a pair-wise subject-specific analysis is conducted. By
quantifying the necessary closeness of a pair of biometric samples,
Mat and Mac , in order to launch a successful attack, appropriate
values of δ can be chosen to achieve more robustness. Alternatively,
modules designed to detect morphed biometric samples can be incor-
porated to the biometric system, where such detection algorithms are
currently developed by different research teams [6, 8, 11, 12].

The soundness of the presented framework is tested by conducting
different attacks based on morphed biometric information, thereby
extending the work of [10]. Whereas facial information is morphed
in image or sample domain, iris information is morphed in feature
domain.

Therefore, the main contributions can be summarised as follows:

•Improved evaluation framework for the vulnerabilities of biometric
systems to attacks based on morphed information. In particular, a
pair-wise subject-specific analysis is added to the approach proposed
in [10].

•Two different case studies are analysed with the proposed framework
in the experimental section: (1) face sample level morphing and (2)
iris feature level morphing.
•In addition, the results of the estimation framework are compared

to the empirical evaluation carried out with the metrics described in
[13].
•The experimental evaluation has been carried out on open source

systems and publicly available databases, thus facilitating repro-
ducibility.

1.2 Article Organisation

The rest of this work is organised as follows: Sect. 2 briefly sum-
marizes related works with respect to attacks based on morphed
biometric information. Subsequently, some key definitions are sum-
marised in Sect. 3 and the proposed framework used to predict
the vulnerability of a biometric system to such attacks is described
in detail in Sect. 4. The metrics used to evaluate specific attacks
are listed in Sect. 5 and experimental evaluations are presented in
Sect. 6. Finally, conclusions are drawn in Sect. 7.

2 Related Works

Attacks based on morphed biometric samples were first introduced
by Ferrara et al. [5]. Motivated by security gaps in the issuance
process of electronic travel documents, the authors showed that
commercial face recognition software tools are highly vulnerable
to such attacks, i.e. different instances of images of either subject
are successfully matched against the morphed image. In their exper-
iments, decision thresholds yielding a false match rate (FMR) of
0.1% have been used, according to the guidelines provided by the
European Agency for the Management of Operational Cooperation
at the External Borders (FRONTEX) [14]. In a further study, the
authors show that morphed face images are realistic enough to fool
human examiners [15]. Scherhag et al. [6] showed that presenta-
tion attack detection schemes employing general purpose texture
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descriptors used in conjunction with machine learning techniques
are not capable of reliably detecting morphed face images. With
respect to the above attack scenario, it is stressed that a detection
of morphed face images becomes even more challenging if images
are printed and scanned. Hildebrandt et al. [8] suggest to employ
generic image forgery detection techniques, in particular multi-
compression anomaly detection, to reliably detect morphed facial
images. Kraetzer et al. [12] evaluate the feasibility of detecting facial
morphs with keypoint descriptors and edge operators. The benefits
of deep neural networks for detecting morphed images have been
recently investigated in [16, 17]. Subsequently, Raghavendra et al.
explore in [18] the effectiveness of a collaborative representation of
micro-texture features extracted from the colour space for face mor-
phing detection. Agarwal et al. show in [19] that a novel approach
to morphing detection based on a Weighted Local Magnitude Pat-
tern feature descriptor outperforms several existing approaches for
a newly created database, which will be publicly available in the
future. In [20], Makrushin et al. explore facial morphing detec-
tion based on the distribution of Benford features extracted from
quantized DCT coefficients of JPEG-compressed morphs and bona
fide images. Neubert [21] analyses a continuous image degradation
approach for morphing detection. Finally, in [22], Wandzik et al.
study the vulnerabilities of a CNN based face recognition system
towards morphing attacks, depending on the contribution of each
subject to the morphed sample.

Regarding other biometric characteristics, Ferrara et al. [7] also
presented two different methods to morph fingerprints in image and
feature domain. For a decision threshold correspoding to a FMR of
0.1%, it is shown that commercial fingerprint recognition systems
are also highly vulnerable to such attacks. Since fingerprint enrol-
ment is usually done live in the issuance process of electronic travel
documents, the authors argue that manufactured fake fingertips may
be presented. More recently, Rathgeb and Busch [9] presented a
technique to create morphed iris-based templates. It is shown that
even iris recognition systems, which operate at a FMR of 0.0001%,
might be vulnerable to said attacks.

Gomez-Barrero et al. [10] proposed the first theoretical frame-
work for measuring the vulnerability of biometric systems to these
attacks. Evaluations are conducted for diverse biometric systems,
where expected comparison scores of attacks based on morphed
images or templates are directly derived from the mated and non-
mated distributions of a face, fingerprint and iris recognition system.
The authors identified key factors which have a major influence on
a system’s vulnerability to such attacks, e.g. the shape of mated and
non-mated score distributions or the FMR the system is operated
at. Since there is no standardised manner to evaluate the vulnerabil-
ity of biometric systems to attacks based on morphed information,
Scherhag et al. [13] introduced new metrics for vulnerability report-
ing (further details in Sect. 6), which strongly relate to the metrics
defined in [4], and which will be employed in our experiments. In
addition, the authors provide recommendations on the assessment
of morphing techniques. It is emphasized that unrealistic assump-
tions with respect to the quality of morphed biometric samples might
cloud the picture regarding the performance of detection algorithms.
In summary it becomes clear that research on attacks based on mor-
phed biometric samples is still in statu nascendi. Nonetheless, at the
time of this writing we see an increasing interest in this topic and the
results of ongoing activities of different research labs are expected
to be presented across diverse platforms in the near future.

3 Definitions and Notations

To extend formality to the problem being addressed, some notations
are introduced in this section. Throughout the article we will use the
Harmonized Biometric Vocabulary (HBV) defined in the ISO/IEC
2382-37 [1]. Given that they are often used throughout the article,
for the sake of clarity, we include here the next definitions:

•Biometric characteristic: “biological and behavioural characteristic
of an individual from which distinguishing, repeatable biometric fea-
tures can be extracted for the purpose of biometric recognition”.

For example, a fingerprint or an iris are two different biometric
characteristics.
•Biometric instance: for some characteristics, an individual possesses

several instances. For example, the right index fingerprint is a differ-
ent instance from the left thumb, even if they serve to identify the
same person.
•Mated samples: “paired biometric probe and biometric reference that

are from the same biometric characteristic of the same biometric data
subject”. For example, two samples from the same iris.
•Non-mated samples: “paired biometric probe and biometric refer-

ence that are not from the same biometric instance”. For example,
two samples from different irises.
•Bona fide presentation: “interaction of the biometric capture subject

and the biometric data capture subsystem in the fashion intended
by the policy of the biometric system”. In other words, bona fide is
analogous to normal or routine, in contrast to the presentation of a
synthetic artefact, such as a morphed photo.
•Template: “set of stored biometric features comparable directly

to probe biometric features”. For instance, the binary iris-code
extracted from an iris image.
•Similarity score: “numerical value (or set of values) resulting from a

comparison” which increases with similarity. That is, given a com-
parison function S, the similarity score s between two templates T1
and T2 is defined as: s = S (T1,T2).

In general, depending on the bona fide samples compared, two
different types of similarity scores are possible within a biometric
system: those obtained from the comparison of mated samples, and
those yielded by comparisons of non-mated samples. Let us accord-
ingly define the corresponding types of score distributions, where
s = S (T1,T2) is the similarity score between two templates:

•Mated trial distribution: scores computed from templates extracted
from different samples of a single biometric instance of the same
subject. It represents the conditional probability of obtaining a
score s knowing that two templates come from mated samples rep-
resenting the same biometric instance, that is, p

(
s|Hm ∧Hbf

)
,

where

Hm = {both templates stem from mated samples}
Hbf = {both templates stem from bona fide samples}

•Non-mated trial distribution: scores yielded by templates generated
from samples of different instances. It represents the conditional
probability of obtaining a score s knowing that two templates come
from non-mated samples (i.e. representing not the same instance),
that is, p

(
s|Hnm ∧Hbf

)
, where

Hnm = {both templates stem from non-mated samples}

Two examples of the probability density functions of the mated
and non-mated distributions are shown in Fig. 2, where the
Non-mated samples distribution, p

(
s|Hnm ∧Hbf

)
, is depicted in

dashed red, and the Mated samples distribution, p
(
s|Hm ∧Hbf

)
,

in solid green, their corresponding mean values are denoted as µm
and µnm, respectively, and the decision threshold δ is represented
with a vertical black dashed line.

For the problem at hand, where bona fide templates can be
compared to either morphed templates or templates extracted from
morphed samples, a third score distribution is defined:

•Morphed trial distribution: the comparison of a template gen-
erated from morphed biometric information to another indepen-
dent bona fide template of one contributing subject, that is,
p
(
s|Hnm ∧Hmorph

)
, where

Hmorph = {one template stems from morphed information}
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Fig. 2: Example of Mated (solid green) and Non-mated (dashed red) trial distributions. In each case, the corresponding Pmorph has been
computed using a single µ (dashed green line), different for each subfigure: (a) the mean value of the mated score distribution, µm, and
the mean value for the mated scores of two particular subjects, µat,acm , which yield (b) the minimum morph threshold, δmin

morph , and (c) the
maximum morph threshold, δmax

morph . In all cases Pmorph corresponds to the shaded area below p
(
s|Hnm ∧Hbf

)
.

4 Theory: General Framework

In order to assess the feasibility of carrying out attacks based on
morphed information such as the ones described in Sect. 1 and Fig. 1,
we have to answer the following question: what is the probability,
denoted as Pmorph , that both subjects contributing to the morphed
image or template are positively matched with it? In other words, for
a given biometric system we want to compute

Pmorph = p (min (sat , sac) > δ) (2)

where δ denotes the decision threshold and s represents the similar-
ity score output by the biometric system during the decision process.
s is the only variable present in all equations in the remainder of the
section, and will have a range determined by the biometric system
evaluated. For simplicity, in the experimental section (Sect. 6), s is
normalised to the range [0, 1].

In practice, one of the aforementioned scores can be higher than
the other one (i.e., sat 6= sac). However, since the relationship
between sat and sac depends on the nature of the morphing pro-
cess (i.e., the weight of each subject on the final morphed sample),
and the main goal of the theoretical framework is to evaluate auto-
matic recognition systems (i.e., the morphed samples do not need
to fool a human examiner but only a software tool), we assume that
sat ≈ sac (i.e., each subject has an equal weight of 50%) as in [10].
With that assumption, the success probability Pmorph defined in
Eq. 2 is maximised, thereby evaluating the worst-case scenario, or
highest success chances of the attack. We thus refer to any of the
scores as sat.

The success of these attacks depends on where sat lies with
respect to the decision threshold δ: the attack will only be suc-
cessful if the identity claim is accepted, that is, if sat > δ. Since
sat stems from a non-mated trial (i.e., the attacker or the accom-
plice against the morphed sample, which represents a third instance),
it will belong to the Non-mated distribution. However, for simi-
larity scores it is more probable that sat lies on the right tail of
the Non-mated distribution, between the mean values of both score
distributions, µm and µnm. This is due to the the following reasons:

•either the reference template Tmorph is extracted from Mmorph
(i.e., morphing at sample level), which is ultimately a combination
of Mat and Mac ,
•or the reference template Tmorph has been created as a combination

of Tat and Tac (i.e., morphing at feature level).

In both cases, it is assumed that the morph was created to allow a
positive verification of both subjects, and as a consequence Tmorph
lies between both bona fide templates Tac and Tat in the feature
space. Due to the assumption of sat ≈ sac and also assuming that
the comparator has a ‘quasi linear’ behaviour (e.g., based on a dis-
tance metric), it is expected to be close to the average of the Mated
and Non-mated scores. Thus, as established in [10], if for a given

accomplice whose characteristic yields a non-mated similarity score
snm with respect to the attacker:

snm = S
(
T′ac,T

′
at

)
(3)

the expected value of sat (µat ) can be estimated as:

µat = E (sat ) = E
(snm + sm

2

)
=
snm + µm

2
(4)

where sm = S
(
T′morph ,Tmorph

)
represents a mated score, and

hence has an expected value of µm.
Such an approximation only takes into account the similarity of

the contributing subjects, snm . However, the nature of the subjects
is not reflected. In other words, the expected mated similarity score
of the attacker in Eq. 4 is modelled as the mean mated score of all
the enrolled subjects, µm. Nonetheless, the morph of two subjects,
whose samples always obtain very high mated similarity scores, is
also expected to achieve high morphed similarity scores, and vice
versa. The reason behind such an assumption lies on the nature of
the morphed template, which is expected to lie between both bona
fide templates in the feature space. Hence, a more precise estimation
can be obtained if µm is substituted by the mean value of the mated
scores stemming from the accomplice and the attacker:

µat,acm = Sat,ac (5)

where Sat,ac =
{
s1,atm , . . . , sI

at ,at
m

}
∪
{
s1,acm , . . . , sI

ac ,ac
m

}
, and

Iat (resp. Iac) indicates the number of mated scores of the attacker
(resp. accomplice).

Therefore, the morph score can be estimated as:

µat = E (sat ) = E
(snm + sm

2

)
=
snm + µat,acm

2
(6)

Now, the probability of success of the morphing attack, as defined
in Eq. 2, ultimately depends on the chances of obtaining an accom-
plice for which µat lies above the decision threshold δ. Which in
turn depends on the score yielded by the accomplice with respect
to the attacker, snm, and the average mated score of both subjects,
µat,acm :

Pmorph = P (µat > δ) = P

(
snm + µat,acm

2
> δ

)

= P
(
snm > 2δ − µat,acm

) (7)

Denoting

δat,acmorph = 2δ − µat,acm (8)
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we can finally compute Pmorph as follows:

Pmorph =
∑
at

∑
ac 6=at

{
snm + µat,acm

2
> δ

}

=
∑
at

∑
ac6=at

{
snm > 2δ − µat,acm

}
=
∑
at

∑
ac6=at

{
snm > δat,acmorph

}
(9)

It should be noted that a different threshold δat,acmorph is computed
for each pair of subjects. In the experimental section, the minimum
δmin
morph and maximum δmax

morph thresholds will be reported.
Finally, Fig. 2a shows the impact of utilising a single value of µ

for the final estimation of Pmorph . In all cases, a single value of µ
(green dashed line) has been utilised in order to facilitate the visu-
alization. The corresponding δmorph is represented with a purple
vertical dashed line, and the area for which snm > δmorph (i.e., suc-
cessful attack, representing Pmorph ) is shaded in red. As it may be
observed, if we assume that both constituting subjects will achieve a
mated score µm (Eq. 4, Fig. 2a), as suggested in [10], the probabil-
ity of success is Pmorph = 30.6%. However, if both subjects yield
mated scores higher than µm (Fig. 2b), the probability of success
rises to Pmorph = 94.6%. The opposite occurs when µat,acm < µm
(Fig. 2c, Pmorph = 4.6%).

In order to facilitate the use of the present framework and allow
reproducibility of the article, a Python implementation of Pmorph
will be made available through the da/sec website and the da/sec
Github account.

5 Practice: Evaluation Metrics

Regarding experimental evaluation metrics for specific morphing
methods, Scherhag et al. proposed in [13] the Mated Morph Pre-
sentation Match Rate (MMPMR). This metric is an adaptation of the
general Impostor Attack Presentation Match Rate (IAPMR) intro-
duced in ISO/IEC 30107-3 [23], which is defined as the proportion
of attack presentations using the same presentation attack instrument
species in which the target reference is matched. The specificities of
the attacks carried out with morphed information, which differ from
presentation attacks, are captured as follows:

•If multiple bona fide templates of one subject are compared to one
morphed template, such comparisons can be understood as multiple
authentication attempts per subject. The subject is thus successfully
verified as long as one attempt is above the threshold of the bio-
metric system. In other words, only the maximum of such scores is
considered:

max
i=1,...,Iatm

sat,im (10)

where sat,im = S
(
Tiat ,T

m
morph

)
is the similarity score between

the template extracted from the i-th sample of the attacker (Tiat ),
and the m-th morphed template Tmmorph . In total, Iatm trials are car-
ried out, which in practice would be specified in the security policy
of the operational system.
•In addition, these attacks can be considered successful if all con-

tributing subjects are positively verified against the morphed tem-
plate. As a consequence, only the minimum similarity score of all
morph trials against one morphed sample is considered:

min

[
max

i=1,...,Iatm
sat,im , max

i=1,...,Iacm
sac,im

]
(11)

Fig. 3: Sample images of two subjects (top and bottom row) of the
AR face database [24].

Therefore, the MinMax-MMPMR metric can be defined as the
average percentage of successful attacks:

MinMax-MMPMR =

1

M
·
M∑
m=1

{(
min

[
max

i=1,...,Iatm
sat,im , max

i=1,...,Iacm
sac,im

])
> δ

}
(12)

It should be noted that the MMPMR depends on the decision
threshold δ of the biometric system. Therefore, it is proposed in
[13] to additionally report the Relative Morph Match Rate (RMMR),
which represents the relationship between the percentage of cor-
rectly matched subjects (1− FNMR) and the percentage of wrongly
matched morph trials (MMPMR):

RMMR (δ) = 1 + (MMPMR (δ)− (1− FNMR (δ))) (13)

An implementation of these metrics can be found at the da/sec
Github account∗.

6 Experimental Evaluation

6.1 Protocol

Two open-source systems will be analysed:

•Face recognition: the OpenFace [26] algorithm has been used. Face
images are pre-processed to align them based on facial landmarks
extracted with dlib [27]. To that end, the corners of the eyes and the
centre of the nose are used as reference. Then, resized and cropped
images of 96×96 pixels are fed to the default pretrained Deep Neu-
ral Network (DNN), to obtain a 128 dimensional face representation.
Finally, templates are classified using a Support Vector Machine
(SVM). For more details on the recognition method, such as the
DNN model, the reader is referred to [26].
•Iris recognition: first, the iris is detected in the image, and trans-

formed into a normalized rectangular texture of 512×64 pixels.
During feature extraction, the normalized enhanced textures are
divided into stripes and adjacent rows averaged in order to obtain
10 one-dimensional signals. Then, a quadratic spline wavelet trans-
form is applied to obtain a final iris-codes of size 512×10 bits, as

∗https://github.com/dasec/mvr
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Fig. 4: Sample images of two eyes (top and bottom row) of the
CASIAv4-Interval iris database [25].

Fig. 5: Sample pre-processed face morphs (bottom) with the corre-
sponding consituting images (top and centre).

proposed by Ma et al. [28]. The employed implementations of the
algorithms are available in [29], and for further details the reader is
referred to [30].

Two publicly available databases are used in the experiments,
being in both cases all possible mated and non-mated trials com-
puted:

•Face - ARface database [24]: from of the 136 subjects, the neutral,
smiling und anger expresion images are considered (6 per subject).
Morphs are generated from pairs of neutral images (first sample).
Some samples are included in Fig. 3. The decision threshold selected
corresponds to FMR = 0.1%, as it is recommended by FRONTEX
[14].
•Iris - CASIAv4-Interval iris database [25]: we have taken into

account images of all 198 left eyes, for which sample images are
depicted in Fig. 4. We consider a Hamming distance of δ = 0.32
as decision criterion which was recommended in [31], and which is
expected to correspond to a FMR of 0.0001% (1 in a million).

Finally, two morphing techniques carried at different levels are
evaluated:

•Face morphing - image domain: morphs are generated in a two step
approach. First, facial landmarks are detected with dlib [27]. Those

Fig. 6: Sample iris-code morph (bottom) with the corresponding
consituting iris-codes (top and centre).

landmarks are subsequently used to morph both images using Delau-
nay triangulation [32] and Alpha Blending [33]. These morphed
images can be presented at enrolment, and hence the corresponding
morphed template will be stored as reference in the database. 8,853
morphed images are created, from which three examples are shown
in Fig. 5.
•Iris morphing - feature domain: as proposed in [9], given a pair

of iris-codes, Tac and Tat , and their corresponding noise masks,
a morphed iris-code Tmorph and a noise mask are created. To
that end, entire rows are interleaved chosen from Tac or Tat , and
assigned to Tmorph . In that selection, it is ensured that the same
number of rows are chosen from both contributing iris-codes. Such
morphed iris-codes can be infiltrated in the database at any time, or
in the communication channel between the feature extractor and the
database at enrolment, which are two of the vulnerable points of bio-
metric systems [2]. A total number of 34,410 morphed iris-codes are
created from pairs of the first image of each subject, from which an
example is shown in Fig. 6.

6.2 Results

In order to properly analyse the success chances of the attacks car-
ried out with morphed samples, all morph scores are shown in Fig. 7,
where they are represented with purple crosses, for face (top) and
iris (bottom). The corresponding decision threshold, δ, is depicted
with a dashed black line. In addition, we have included the theoret-
ical scores (red stars), computed from the non-mated trials and the
average mated score of the constituting samples (see Eq. 6). The per-
centage of scores which lay over the decision threshold (i.e., which
grant a positive match) is included in the legend.

First, all possible combinations of similarity scores of the attacker
and the accomplice with respect to the morphed sample are depicted
as a set of points on the left figures (Figs. 7a and 7c, compris-
ing 191,281 score pairs for face and 128,978 for iris). As it may
be observed, in the practical evaluation, the percentage of positive
matches is 0.42% for iris and 2.45% for face. However, on the right
figures (Figs. 7b and 7d) only the relevant pairs of scores, as defined
in Eq. 11, are depicted (8,853 pairs for face and 34,410 for iris, one
pair for each morphed sample). In this case, a morphed image is
successful if any verification attempt results in a match, and there-
fore the success chances increase to 1.95% and 9.58%, respectively.
These differences highlight the importance of considering only the
scores defined as in Eq. 11 in order to better estimate the success
chances of the attack.

In addition to the aforementioned fact, we can also observe in
the scatter plots that morphs which achieve high (resp. low) morph
scores for one of the constituting subjects, are more likely to achieve
it for both subjects. This is reflected on a smaller deviation from the
bisector (i.e., sat = sac) for extreme similarity scores rather than for
medium similarity scores.

Keeping those reflections in mind, Mated (solid green), Non-
mated (dashed red) and Morphed (solid purple) trial distributions
for both systems are depicted in Fig. 8. Only the relevant mor-
phed scores (see Eq. 11) are considered in this plot. As before,
the decision threshold δ is depicted with a black dashed line, and
the minimum δmin

morph and maximum δmax
morph morph threshold are

plotted in purple. The value of Pmorph and MinMax-MMPMR,
which corresponds to the shaded area below p

(
s|Hm ∧Hmorph

)
,
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Fig. 7: Scatter plots of the morphed scores of a morph template with respect to both constituting subjects (purple ’x’) and the theoretical scores
sat (red stars). In addition, the decision threshold δ is shown with a dashed black line. While on the left (a,c) all practical scores are depicted,
only the relevant scores (see Eq. 11) are shown on the right (b,d). The percentages in the legend show the number of scores above the decision
threshold δ.
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Fig. 8: Mated (solid green), Non-mated (dashed red) and Morph (solid purple) trial distributions for the systems based on face (left) and iris
(right). The latter only consideres the relevant scores (Eq. 11). In all cases, the decision threshold δ is depicted with a black dashed line, and
the minimum δmin

morph and maximum δmax
morph morphing threshold are plotted in purple. The value of Pmorph and MinMax-MMPMR, which

corresponds to the shaded area below p
(
s|Hm ∧Hmorph

)
, are also included.

are also included. The results of both the theoretical and the practical
evaluations are summarised in Table 1, which also shows all the dis-
tributions statistics in terms of mean and standard deviation, as well
as the intermediate values to compute Pmorph .

As it may be observed in this last set of figures and on the table,
since only the relevant scores are considered, the MinMax-MMPMR
coincides with the practical evaluation carried out in Figs. 7b and 7d.

Similarly, the reported Pmorph is exactly the percentage of success-
ful attacks reported in Fig. 7. For the iris system, the estimation is
considerably closer to MinMax-MMPMR than that proposed in [10]
(P̄morph = 0.003% vs Pmorph = 2.68%), due to the use of a pair-
wise subject specific mean value µat,acm (see Eq. 5). This is however
not the case for face, where the estimation is very similar to P̄morph
due to the sharpness of the mated score distribution with respect to
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Table 1 Evaluation of the distributions depicted in Fig. 8, including the corresponding mean (µ) and standard deviation (σ), the operating point analysed in terms
of FMR and FNMR, with the corresponding decision threshold δ. For the theoretical analysis, the morphing δmin

morph and δmax
morph (Eq. 8) thresholds and the probability

of success of a morphing attack Pmorph (Eq. 9) are shown. For comparison, P̄morph as presented in [10] is also included. Finally, for the practical analysis, the
MinMax-MMPMR (Eq. 12) and RMNMR (Eq. 13) are depicted.

EER µm σm µnm σnm FMR FNMR δ δmin
morph δmax

morph Pmorph P̄morph [10] MMPMR RMMR

Face 5.73% 0.92 0.06 0.56 0.16 0.1% 30.53% 0.90 0.84 1.00 0.27% 0.26% 9.58% 40.11%
Iris 0.71% 0.76 0.06 0.53 0.01 0.0001% 9.36% 0.68 0.57 0.73 2.68% 0.003% 1.95% 11.31%

Table 2 Evaluation of lookalike morphs, including the theoretical estimation of
the probability of success of a morphing attack Pmorph (Eq. 9) and the empirical
MinMax-MMPMR (Eq. 12).

Pmorph MMPMR

Face All morphs 0.27% (0.003 ·MMPMR) 9.58%
50% best morphs 0.84% (0.005 ·MMPMR) 15.25%

Iris All morphs 2.68% (1.32 ·MMPMR) 1.95%
50% best morphs 2.69% (1.05 ·MMPMR) 2.55%

the non-mated distribution (σm = 0.06 vs. σnm = 0.16). In addi-
tion, whereas Pmorph yields a good estimate for MinMax-MMPMR
(1.95%) for the iris morphs, it is further from the MinMax-MMPMR
of the face morphs (9.58%). This is due to the morphing process car-
ried out in each case. For iris, half of the features are selected from
each subject, as it is assumed in Eq. 6. However, a blending pro-
cess is carried out on the facial images, from which the features are
subsequently extracted. The quantization done by the feature extrac-
tor (i.e., from the input image only 128 values are extracted) leads
to a considerable reduction in the feature space (i.e, compression),
which in turn moves the morphed template closer to both subjects
in the feature space. The theoretical framework, as a consequence,
underestimates the success chances of the attack.

Regarding the empirical evaluation, the RMMR is also included
in Table 1. As it may be observed, the absolute difference between
the corresponding MinMax-MMPMR is increased for the RMMR:
it decreased from 40.11% for face to 11.31% for iris. This is due
to the difference in the FNMR (see Eq. 13), which is 9.36% for iris
(i.e., roughly one out of ten mated trials will be wrongly rejected) in
contrast to the 30.53% for face (i.e., roughly one out of three mated
trials will be wrongly rejected). This metric, therefore, reflects the
balance between the vulnerability of the system to attacks carried
out with morphed samples and the usability in terms of false non-
matches.

To conclude the section, it should be noted that when the suc-
cess probabilities of the theoretical (Pmorph ) and the practical
(MinMax-MMPMR) evaluations are analysed for the iris system, we
observe that Pmorph > MinMax-MMPMR. This is due to the theo-
retical assumption that sat = sac, which is not fulfilled in practice.
However, we may observe that for high similarity scores, the real
morphed mated scores are close to the bisector of the corresponding
scatter plot, thereby representing a smaller deviation from the theo-
retical assumption. Since in a realistic scenario, only similar subjects
would be morphed (e.g., with the same gender or skin color), we
may conclude that, if only such more realistic morphs are taken into
account, Pmorph would be closer to MinMax-MMPMR. To study
this fact, a final analysis of the behaviour of both the MinMax-
MMPMR and the proposed metric Pmorph has been included in
Table 2. Both empirical and estimated values have been computed
for all morphs analysed in Table 1 and for the best 50% morphs in
terms of how similar the accomplice and the attacker characteristics
are, in terms of their similarity score. Those morphs will be referred
to as lookalike morphs. As it could be expected, if we restrict the
attacks to those lookalike morphs, the MMPMR rises from 9.58% to
15.35% for face, and from 1.95% to 2.55% for iris. Similarly, in line
with the discussion above, the estimation obtained from Pmorph is
twice as accurate for face. And for iris, the estimation deviates only
by 5% relative from the empirical MinMax-MMPMR.

7 Conclusions

In this work, we have analysed, from both a theoretical and a prac-
tical perspective, the vulnerabilities of two different state-of-the-art
and freely available biometric systems to attacks carried out with
morphed templates (i.e., morphing in the feature domain) and images
(i.e., morphing in the signal domain). To that end, we have pro-
posed a framework, which builds upon a prior work [10], in order
to estimate the probability of all constituent subjects being posi-
tively matched to the morphed reference stored in the database. The
theoretical framework only needs access to mated and non-mated
samples similarity scores in order to compute such probability, and
can be eventually applied to any database as long as high quality
morphs are generated, as recommended in [13]. In addition, it offers
a more accurate estimation than the initial approximation in [10] for
feature level morphing, since it takes into account the nature of the
constituting subjects. A similar behaviour is expected from signal
level morphing where no features are lost by the morphing process
or no additional noise is introduced: for instance, the fingerprint
morphing proposed in [7], where half of the minutiae set belongs
to each subject. Further efforts are however required for morphing
approaches such as the facial one analysed, where feature extraction
processes including a severe quantization of the input sample should
be considered in the evaluation framework.

For clarity, the framework has been described for the case where
only two subjects are morphed into a single sample. However, it
could be easily extended to a morph on n subjects by introducing two
modifications in Eq. 6: (1) the mean value of the mated scores of all
constituting subjects should be considered (i.e., µ1 ,...,nm instead of
µat,acm ), and (2) the mean of the distances between the constituting
subjects,

{
s1,2, s1,3, . . . , s1,n, . . . , sn−1,n

}
, should replace snm.

We will analyse this extension of the framework in future works.
The theoretical estimation is compared with two specific morph-

ing techniques in the feature and the image domain, respectively.
First, the morphed mated score distributions are analysed, proving
the importance of modelling the attack scenario correctly. In other
words, only the relevant scores should be considered, which take into
account two facts: (1) all constituting subjects need to be matched to
the morphed reference and (2) at least one verification attempt must
be successful. For this practical analysis, we have used the evalua-
tion metrics proposed in [13], which are aligned with the ISO/IEC IS
30107-3 on Biometric presentation attack detection and will hence
allow a fairer comparison with future research works.

Finally, with the aim to make the article reproducible, an imple-
mentation of the metrics will be made public through the da/sec
website and the da/sec Github account.
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