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Abstract—Systems incorporating biometric technologies have
become ubiquitous in personal, commercial, and governmental
identity management applications. Both cooperative (e.g. access
control) and non-cooperative (e.g. surveillance and forensics)
systems have benefited from biometrics. Such systems rely on the
uniqueness of certain biological or behavioural characteristics
of human beings, which enable for individuals to be reliably
recognised using automated algorithms.

Recently, however, there has been a wave of public and aca-
demic concerns regarding the existence of systemic bias in auto-
mated decision systems (including biometrics). Most prominently,
face recognition algorithms have often been labelled as “racist”
or “biased” by the media, non-governmental organisations, and
researchers alike.

The main contributions of this article are: (1) an overview
of the topic of algorithmic bias in the context of biometrics, (2)
a comprehensive survey of the existing literature on biometric
bias estimation and mitigation, (3) a discussion of the pertinent
technical and social matters, and (4) an outline of the remaining
challenges and future work items, both from technological and
social points of view.

Index Terms—Biometrics, bias, bias estimation, bias mitiga-
tion, demographics, fairness.

I. INTRODUCTION

Artificial intelligence systems increasingly support humans
in complex decision-making tasks. Domains of interest include
learning, problem solving, classifying, as well as making
predictions and risk assessments. Automated algorithms have
in many cases already outperformed humans and hence are
used to support or replace human operators [1]. Those systems,
referred to as “automated decision systems”, can yield various
benefits, e.g. increased efficiency and decreased monetary
costs. At the same time, a number of ethical and legal con-
cerns have been raised, specifically relating to transparency,
accountability, explainability, and fairness of such systems [2].
Automated algorithms can be utilised in diverse critical areas
such as criminal justice [3], healthcare [4], creditworthi-
ness [5], and others [6], hence often sparking controversial
discussions. This article focuses on algorithmic bias and
fairness in biometric systems w.r.t. demographic attributes.
In this context, an algorithm is considered to be biased if
significant differences in its operation can be observed for
different demographic groups of individuals (e.g. females or
dark-skinned people), thereby privileging and disadvantaging
certain groups of individuals.

A. Motivation

The interest and investment into biometric technologies
is large and rapidly growing according to various market
value studies [7], [8], [9]. Biometrics are utilised widely by
governmental and commercial organisations around the world
for purposes such as border control, law enforcement and
forensic investigations, voter registration for elections, as well
as national identity management systems. Currently, the largest
biometric system is operated by the Unique Identification
Authority of India, whose national ID system (Aadhaar) ac-
commodates almost the entire Indian population of 1,25 billion
enrolled subjects at the time of this writing, see the online
dashboard [10] for live data.

In recent years, reports of demographically unfair/biased
biometric systems have emerged (see section III), fueling a
debate on the use, ethics, and limitations of related technolo-
gies between various stakeholders such as the general pop-
ulation, consumer advocates, non-governmental and govern-
mental organisations, academic researchers, and commercial
vendors. Such discussions are intense and have even raised
demands and considerations that biometric applications should
be discontinued in operation, until sufficient privacy protection
and demographic bias mitigation can be achieved1,2,3,4. Algo-
rithmic bias is considered to be one of the important open
challenges in biometrics by Ross et al. [11].

B. Article Contribution and Organisation

In this article, an overview of the emerging challenge of
algorithmic bias and fairness in the context of biometric
systems is presented. Accordingly, the biometric algorithms
which might be susceptible to bias are summarised; further-
more, the existing approaches of bias estimation and bias
mitigation are surveyed. The article additionally discusses
other pertinent matters, including the potential social impact of
bias in biometric systems, as well as the remaining challenges
and open issues in this area.

1https://www.banfacialrecognition.com/
2https://www.cnet.com/news/facial-recognition-could-be-temporarily-

banned-for-law-enforcement-use/
3https://www.theguardian.com/technology/2020/jan/17/eu-eyes-temporary-

ban-on-facial-recognition-in-public-places
4https://www.biometricupdate.com/202001/eu-no-longer-considering-

facial-recognition-ban-in-public-spaces
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The remainder of this article is organised as follows:
relevant background information is provided in section II.
Section III contains a comprehensive survey of the scientific
literature on bias estimation and mitigation in biometric sys-
tems. Other relevant matters are discussed in section IV, while
concluding remarks and a summary are presented in section V.

II. BACKGROUND

The following subsections provide relevant background in-
formation w.r.t. the topic of bias in automated decision systems
in general (subsection II-A) and the basics of biometric sys-
tems (subsection II-B). Furthermore, due to the sensitive nature
of the matter at hand, subsection II-C outlines the choices
made w.r.t. the nomenclature used throughout the article.

A. Bias in Automated Decision Systems

In recent years, numerous concerns have been raised re-
garding the accuracy and fairness of automated decision-
making systems. For instance, many studies regarding the
risk assessment and welfare distribution tools found a number
of issues concerning systemic bias and discrimination of the
systems’ predictions (e.g. against dark-skinned people). The
impact of such automated decisions on the lives of the affected
individuals can be tremendous, e.g. being jailed, denied a bail,
parole, or welfare payments [2], [3], [12], [13]. Demographics-
based bias and discrimination are especially concerning in this
context, even if they occur unintentionally. One would intu-
itively expect that certain decisions be impacted exclusively by
hard facts and evidence, and not factors often associated with
discrimination – such as sex or race, or other context-specific
discriminatory factors. Nonetheless, biases in decision-making
are a common occurrence; along with notions of fairness, this
topic has been extensively studied from the point of view of
various disciplines such as psychology, sociology, statistics,
and information theory [14], [15], [16]. Recently, the field
of bias and fairness in automated computer algorithms and
machine learning has emerged [17], [18].

A good discussion of the topic of bias was provided
by Danks and London [19], as well as Friedman and Nis-
senbaum [20], both of which explored various sources and
types of bias in the context of computer systems. In many
cases, bias in the automated decision systems is directly
related to the human designers or operators of a system. Semi-
automatic decision systems are a good example of this. In such
systems, a human decision maker can be aided by an algorithm
(e.g. risk-assessment). In such cases, errors in interpretation
of the results of the system might occur; in other words, the
human might misunderstand or misrepresent the outputs or
general functioning principles of an algorithm [21], [22], [23].
Furthermore, it has been shown that humans in general tend
to over-rely on such automated systems, i.e. to overestimate
the accuracy of their results [24]. While human cognitive
biases are an important and actively researched topic, this
article focuses exclusively on bias occurring in the context
of automated algorithms themselves. Human congnitve biases
have been analysed e.g. by Evans [14], whereas bias in

human interactions with automated system was explored e.g.
by Parasuraman and Manzey [25].

In the context of automated decision algorithms themselves,
numerous potential bias causes exist. Most prominently, the
training data could be skewed, incomplete, outdated, dispro-
portionate or have embedded historical biases, all of which
are detrimental to algorithm training and propagate the bi-
ases present in the data. Likewise, the implementation of
an algorithm itself could be statistically biased or otherwise
flawed in some way, for example due to moral or legal
norms, poor design, or data processing steps such as parameter
regularisation or smoothing. For more details on the topic of
algorithmic bias in general, the reader is referred to e.g. [6],
[19], [20]. In the next sections, an introduction to biometric
systems is provided, followed by a survey on algorithmic bias
in such systems specifically.

B. Biometric Systems

Biometric systems aim at establishing or verifying the
identity or demographic attributes of individuals. In the in-
ternational standard ISO/IEC 2382-37 [26], “biometrics” is
defined as: “automated recognition of individuals based on
their biological and behavioural characteristics”.

Humans possess, nearly universally, physiological character-
istics which are highly distinctive and can therefore be used
to distinguish between different individuals with a high degree
of confidence. Example images of several prominent biometric
characteristics are shown in figure 1.

(a) Face (b) Iris (c) Fingerprint (d) Veins

Fig. 1: Examples of biometric characteristics (images from
publicly available research databases [27], [28], [29], [30]).

Broadly speaking, an automated biometric system consists
of: (1) a capture device (e.g. a camera), with which the biomet-
ric samples (e.g. images) are acquired; (2) a database which
stores the biometric information and other personal data; (3)
signal processing algorithms, which estimate the quality of the
acquired sample, find the region of interest (e.g. a face), and
extract the distinguishing features from it; (4) comparison and
decision algorithms, which enable ascertaining of similarity
of two biometric samples by comparing the extracted feature
vectors and establishing whether or not the two biometric
samples belong to the same source.

In the past, biometric systems typically utilised hand-
crafted features and algorithms (i.e. texture descriptors, see
Liu et al. [31]). Nowadays, the use of machine learning and
deep learning has become increasingly popular and successful.
Relevant related works include [32], [33], [34], which achieved
breakthrough biometric performances in facial recognition.
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Furthermore, promising results for deep learning-based fin-
gerprint (see e.g. [35]) and iris (see e.g. [36]) recognition
have also been achieved. For a review of deep learning
techniques applied within biometrics, the reader is referred to
Sundararajan and Woodard [37]. For a highly comprehensive
introduction to biometrics, the reader is referred to Li and
Jain [38] and the handbook series [39], [40], [41], [42], [43].

C. Nomenclature

In this section, the nomenclature used throughout this arti-
cle is explained. The authors note that demographic words,
groups, and concepts such as “gender”, “sex”, “race”, and
“ethnicity” can be extremely divisive and bear a heavy histor-
ical, cultural, social, political, or legislative load. The authors
do not seek to define or redefine those terms; we merely report
on the current state of the research. In the literature surveyed
later on in this article, following trends can be distinguished:

1) The terms “gender” and “sex” are often used in a binary
and conflated manner. Readers interested in the possible
consequences of this narrow approach are referred to [44].

2) Similarly, very often no real distinction between the terms
“race” and “ethnicity” is made; moreover, the typical
categorisation is very coarse, only allowing for a small
and finite (less than ten) possible racial/ethnic categories.

3) In general, and especially in the case of facial biometrics,
demographic factors seem to be considered on the phe-
notypic basis, i.e. concerning the observable traits of the
subjects (e.g. colour of the skin or masculine appearance).

Due to the demographic terms carrying a large amount of
complexity and potential social divisiveness, the authors do not
engage in those debates in this article, and merely reproduce
and discuss the technical aspects of the current research.
For the sake of consistency, certain decisions regarding the
used nomenclature have to be made, especially since the
surveyed literature does often seem to use the aforementioned
demographic terms ambiguously or interchangeably.

Recently, in the context of biometrics, ISO/IEC has made
the following separation [45]5: while the term “gender” is
defined as “the state of being male or female as it relates
to social, cultural or behavioural factors”, the term “sex” is
understood as “the state of being male or female as it relates
to biological factors such as DNA, anatomy, and physiology”.
The report also defines the term “ethnicity” as “the state of
belonging to a group with a common origin, set of customs
or traditions”, while the term “race” is not defined there.
While the cultural and religious norms can certainly affect
biometric operations, the surveyed literature mostly considers
the appearance-based features and categorisation – hence,
the term “race” is used instead of “ethnicity” and the term
“sex” is used instead of “gender” in accordance with ISO/IEC
22116 [45]. In the context of biometrics in general, the
standardised biometric vocabulary is used, see ISO/IEC 2382-
37 [26]. Finally, it is noted that a large part of the surveyed
biometric literature follows the notions and metrics regarding
evaluation of biometric algorithms irrespective of the chosen
biometric characteristic defined in ISO/IEC 19795-1 [46].

5Note that the document is currently in a draft stage.

Those limitations and imprecisions of the nomenclature
notwithstanding, due to the potential of real and disparate
impacts [47] of automated decision systems including biomet-
rics, it is imperative to study the bias and fairness of such
algorithms w.r.t. the demographic attributes of the population,
regardless of their precise definitions.

III. BIAS IN BIOMETRIC SYSTEMS

To facilitate discussions on algorithmic fairness in biometric
systems, Howard et al. [48] introduced following two terms:
Differential performance concerns the differences in (gen-

uine and/or impostor) score distributions between the
demographic groups. Those effects are closely related
to the so-called “biometric menagerie” [49], [50], [51].
While the menagerie describes the score distributions be-
ing statistically different for specific individual subjects,
the introduced term describes the analogous effect for
different demographic groups of subjects.

Differential outcomes relate to the decision results of the
biometric system, i.e. the differences in the false-match
and false-non-match rates at a specific decision threshold.

Given that these terms have been introduced relatively
recently, the vast majority of surveyed literature has not
(directly) used them, instead ad hoc methodologies based
on existing metrics were used. However, Grother et al. [52]
presented a highly comprehensive study of the demographic
effects in biometric recognition, conducting their benchmark
utilising the terms and notions above. A standardisation effort
in this area under the auscpices of ISO/IEC is ongoing [45].

Before surveying the literature on bias estimation and miti-
gation (subsections III-C and III-D, respectively), this section
begins with an outline of biometric algorithms which might
be affected by bias (subsection III-A), as well as of covariates
which might affect them (subsection III-B).

A. Algorithms

Similarly to other automated decision systems, human bi-
ases have been shown to exist in the context of biometrics.
The so-called “other-race effect” has long been known to
affect human ability to recognise faces [53]. As previously
stated, the cognitive biases of humans are out of scope for this
article, as it focuses on the biases in the algorithms themselves.
The processing pipeline of a biometric system can consist
of various algorithms depending on the application scenario
and the chosen biometric characteristic. Said algorithms might
be subject to algorithmic bias w.r.t. certain covariates, which
are described in subsection III-B. Below, the most important
algorithms used in the context of biometrics are described and
visualised conceptually in figure 2.

One of the most prevalent uses of biometrics is recognition.
Here, distinguishing features of biometric samples are com-
pared to ascertain their similarity. Such systems typically seek
to (1) determine if an individual is who they claim to be (i.e.
one-to-one comparison), or (2) to determine the identity of an
individual by searching a database (i.e. one-to-many search).
Accordingly, the following two scenarios might be used in
biometric recognition:
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Fig. 2: Conceptual overview of algorithms used in biometric systems.

Verification Referring to the “process of confirming a bio-
metric claim through biometric comparison” [26], [46].

Identification Referring to the “process of searching against
a biometric enrolment database to find and return the
biometric reference identifier(s) attributable to a single
individual” [26], [46].

The biometric samples are a rich source of information
beyond the mere identity of the data subject. Another use case
of biometrics is the extraction of auxiliary information from a
biometric sample, primarily using the following algorithms:
Classification and estimation Referring to the process of

assigning demographic or other labels to biometric sam-
ples [54], [55].

Prior to recognition or classification tasks, the system must
acquire and pre-process the biometric sample(s). Here, most
prominently, following algorithms might be used:
Segmentation and feature extraction Referring to the pro-

cess of locating the region of interest and extracting a set
of biometric features from a biometric sample [38].

Quality assessment Referring to the process of quantifying
the quality of an acquired biometric sample [56], [57].

Presentation attack detection (PAD) Referring to the “au-
tomated determination of a presentation attack”, i.e.
detecting a “presentation to the biometric data capture
subsystem with the goal of interfering with the operation
of the biometric system” [58], [59].

B. Covariates

Broadly, three categories of covariates relevant for the
effectiveness of the biometric algorithms can be distinguished:

Demographic Referring to e.g. the sex, age, and race of the
data subject.

Subject-specific Referring to the behaviour of the subject
(e.g. pose or expression, use of accessories such as
eyewear or make-up), as well as their interaction with the
capture device (e.g. distance from a camera or pressure
applied to a touch-based sensor).

Environmental Referring to the effects of the surroundings
on the data acquisition process (e.g. illumination, occlu-
sion, resolution of the images captured by the sensor).

Figure 3 shows example images of the aforementioned
covariates using the facial biometric characteristic. While there
do exist studies that investigate environmental and subject-
specific covariates (e.g. [60]), this article concentrates on the
demographic covariates.

C. Estimation

Table I summarises the existing research in the area of bias
estimation in biometrics. The table is organised conceptually
as follows: the studies are divided by biometric character-
istic and listed chronologically. The third column lists the
algorithms (recall subsection III-A) evaluated by the studies,
while the covariates (recall subsection III-B) considered in the
studies are listed in the next column. Finally, the last column
outlines the key finding(s) of the studies. Wherever possible,
those were extracted directly from the abstract or summary
sections of the respective studies.

By surveying the existing literature, following trends can be
distinguished:
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(a) Demographic (different sex, age, and race). (b) Subject-specific (different pose and expres-
sion, use of make-up and accessories).

(c) Environmental (different lighting conditions,
sharpness, and resolution).

Fig. 3: Example images of covariates which might influence a biometric system utilising facial information (images from a
publicly available research database [27]). Black rectangles were added in an effort to respect individual anonymity and privacy.

1) Most existing studies conducted the experiments using
face-based biometrics. There are significantly fewer stud-
ies on other modalities (primarily fingerprint).

2) The majority of studies concentrated on biometric recog-
nition algorithms (primarily verification), followed by
quality assessment and classification algorithms.

3) Some scenarios have barely been investigated, e.g. pre-
sentation attack detection.

4) The existing studies predominantly considered the sex
covariate; the race covariate is also often addressed
(possibly due to the recent press coverage [134], [135]).
The age covariate is least often considered in the context
of bias in the surveyed literature. The impact of ageing
on biometric recognition is an active field of research,
but out of scope for this article. The interested reader is
referred to e.g. [73], [106], [136], [137], [138], [139].

5) Many studies focused on general accuracy rather than
distinguishing between false positive and false negative
errors. Recent works [48], [52] introduced and used the
useful concepts of “false positive differentials” and “false
negative differentials” in demographic bias benchmarks.

6) A significant number of studies (e.g. [48], [52],
[82]) conducted evaluations on sequestered databases
and/or commercial systems. Especially the results of
Grother et al. [52] in the context of an evaluation
conducted by the National Institute of Standards and
Technology (NIST) were valuable due to the realis-
tic/operational nature of the data, the large scale of used
databases, as well as the testing of state-of-the-art com-
mercial and academic algorithms. However, reproducing
or analysing their results may be impossible due to the
unattainability of data and/or tested systems.

Following common findings for the evaluated biometric
algorithms can be discerned:

Recognition One result which appears to be mostly consis-
tent across surveyed studies is that of worse biometric
performance (both in terms of false positives and false
negatives) for female subjects (see e.g. [52], [67]). Fur-
thermore, several studies associated race as a major factor
influencing biometric performance. However, the results
were not attributed to a specific race being inherently
more challenging. Rather, the country of software devel-
opment (and presumably the training data) appears to play
a major role; in this context, evidence of the “other-race”
effect in facial recognition has been found [65], e.g. algo-
rithms developed in Asia were more easily recognising
Asian individuals and conversely algorithms developed
in Europe were found to be more easily recognising
Caucasians. Finally, the age has been determined to be an
important factor as well – especially the very young sub-
jects were a challenge (with effects of ageing also playing
a major role). Grother et al. [52] presented hitherto the
largest and most comprehensive study of demographic
bias in biometric recognition. Their benchmark showed
that false-negative differentials usually vary by a factor
of less than 3 across the benchmarked algorithms. On
the other hand, the false-positive differentials were much
more prevalent (albeit not universal) and often larger,
i.e. varying by two to three orders of magnitude across
the benchmarked algorithms6. Most existing studies con-
sidered biometric verification, with only a few address-
ing biometric identification. Estimating bias in biometric
identification is non-trivial, due to the contents of the
screening database being an additional variable factor
susceptible to bias. Specifically, in addition to potential

6Note that this is a very high-level summary to illustrate the general size
of the demographic differentials. The experimental results are much more
nuanced and complex, as well as dependent on a number of factors in the
used data, experimental setup, and the algorithms themselves.



This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TTS.2020.2992344, IEEE
Transactions on Technology and Society

IEEE TRANSACTIONS ON TECHNOLOGY AND SOCIETY 6

TABLE I: Summary of studies concerning bias estimation in biometric systems.

Reference Characteristic Algorithm(s) Covariate(s) Key Findings

Beveridge et al. [61] Face Verification Sex, age, race Better biometric performance for older subjects, males, and East Asians.
Lui et al. [62] Face Verification Sex, age, race Meta-analysis of previous studies.
Guo et al. [63] Face Age estimation Sex, race Large impact of the training data composition on the system accuracy.
Grother et al. [64] Face Verification Sex More false-non-matches at fixed FMR for females than for males.
Phillips et al. [65] Face Verification Race Varying results depending on the demographic origin of the algorithm and demographic structure of

the data subjects.
O’Toole et al. [66] Face Verification Sex, race The concept of “yoking” in experimental evaluation to demonstrate the variability of algorithm

performance estimates.
Klare et al. [67] Face Verification Sex, age, race Lower biometric performance for females, young, and black cohorts.
Givens et al. [68] Face Verification Sex, age, race Better biometric performance for Asian and older subjects.
Beveridge et al. [69] Face Verification Sex, race Better biometric performance for males and Asian subjects.
Ricanek et al. [70] Face Verification Age Poor biometric performance for children.
El Khiyari et al. [71] Face Verification Sex, age, race Lower biometric performance for female, 18-30 age group, and dark-skinned subjects.
Deb et al. [72] Face Verification Sex, race Algorithm dependent effects of the covariates.
Best-Rowden et al. [73] Face Verification Sex, age, race Lower comparison scores for females.
Buolamwini et al. [74] Face Sex and race classification Race Highest accuracy for males and light-skinned individuals; worst accuracy for dark-skinned females.
Deb et al. [75] Face Verification, identification Age Child females easier to recognise than child males.
Michalski et al. [76] Face Verification Age Large variation of biometric performance across age and ageing factors in children. Poor biometric

performance for very young subjects.
Abdurrahim et al. [77] Face Verification Sex, age, race Lower biometric performance for females, inconsistent results w.r.t. age and race.
Rhue et al. [78] Face Emotion classification Race Negative emotions more likely to be assigned to dark-skinned males.
Lu et al. [79] Face Verification Sex, age, race Lower biometric performance for females; better biometric performance for middle-aged.
Raji et al. [80] Face Sex and race classification Sex, race Lower accuracy for dark-skinned females.
Srinivas et al. [81] Face Verification, identification Sex, age Lower biometric performance for females and children.
Cook et al. [82] Face Verification Sex, age, race Genuine scores tend to be worse for females than males.
Hupont et al. [83] Face Verification Sex, race Highest biometric performance for white males, lowest for Asian females.
Denton et al. [84] Face Classification CelebA attributes Generative adversarial model which can reveal biases in a face attribute classifier.
Garcia et al. [85] Face Verification, presentation at-

tack detection
Sex, race Higher inter-subject distance for Caucasians than other groups; morphing attacks more successful for

Asian females.
Nagpal et al. [86] Face Verification Age, race Training data dependent own-age and own-race effect in deep learning-based systems.
Krishnapriya et al. [87] Face Quality, verification Race Lower rate of ICAO compliance [88] for the dark-skinned cohort, fixed decision thresholds not suitable

for cross-cohort biometric performance benchmark.
Muthukumar [89] Face Sex classification Race Lower accuracy for dark females; importance of not only skin type, but also luminance in the images

on the results.
Srinivas et al. [90] Face Verification, identification Age Lower biometric performance for children.
Vera-Rodriguez et al. [91] Face Verification Sex Lower biometric performance for females.
Howard et al. [48] Face Verification Sex, age, race Evaluates effects of population homogeneity on biometric performance.
Wang et al. [92] Face Verification Race Higher biometric performance for Caucasians.
Serna et al. [93] Face Verification Sex, race Better biometric performance for male Caucasians; large impact of the training data composition on

the system accuracy.
Cavazos et al. [94] Face Verification Sex, race Higher false match rate for Asians compared to Caucasians at operationally relevant fixed decision

thresholds; data-driven anomalies might contribute to system bias.
Grother et al. [52] Face Verification, identification Sex, age, race Large-scale benchmark of commercial algorithms. Algorithm dependent false positive differentials w.r.t.

race. Consistently elevated false positives for female, elderly and very young subjects. Algorithm
specific false negative differentials, also correlated with image quality.

Robinson et al. [95] Face Verification Sex, race Highest biometric performance for males and Caucasians.
Albiero et al. [96] Face Verification Sex Lower biometric performance for females. Negative impact of facial cosmetics on (female) genuine

scores distribution. Minor impact of expression, pose, hair occlusion, and imbalanced datasets on bias.
Krishnapriya et al. [97] Face Verification, identification Race Lower biometric performance for females, higher false match rate for African-Americans, and higher

false non-match rate for Caucasians at fixed, operationally relevant decision threshold.
Terhörst et al. [98] Face Quality Age, race Bias in quality scores for demographic and non-demographic characteristics is significant. Bias is

transferred from face recognition to face image quality.

Hicklin et al. [99] Fingerprint Quality Sex Lower sample quality for females.
Sickler et al. [100] Fingerprint Quality Age Lower sample quality for the elderly.
Modi et al. [101] Fingerprint Quality, verification Age Lower sample quality and biometric performance for the elderly.
Modi et al. [102] Fingerprint Quality, verification Age Lower sample quality and biometric performance for the elderly.
Frick et al. [103] Fingerprint Quality, verification Sex Higher sample quality and biometric performance for males.
O’Connor et al. [104] Fingerprint Quality, verification Sex Higher sample quality for males, higher biometric performance for females.
Schumacher et al. [105] Fingerprint Quality, verification Age Lower sample quality and biometric performance for children.
Yoon et al. [106] Fingerprint Quality, verification Sex, age, race Negligible correlations between sample quality and subject age; sex and race have a marginal impact

on comparison scores, whereas subject’s age has a non-trivial impact for genuine scores.
Galbally et al. [107], [108] Fingerprint Quality, verification Age On average, low quality for children under 4 years and elderly (70+ years), medium quality for children

between 4 and 12 years. Lowest biometric performance in youngest children, then elderly.
Preciozzi et al. [109] Fingerprint Quality, verification Age Lower sample quality and biometric performance for young children.

Drozdowski et al. [110] Fingervein Verification Sex, age No statistically significant biases detected.

Fang et al. [111] Iris Presentation attack detection Sex Better PAD rates for males. Maps differential performance/outcome concepts to PAD.

Xie et al. [112] Palmprint Sex classification Sex Higher accuracy for females.
Uhl et al. [113] Palmprint Verification Age Lower biometric performance for very young subjects.

Brandão et al. [114] Unconstrained Pedestrian detection Sex, age Higher miss rate for children.

biases in the biometric algorithms themselves, certain
biases stemming from data acquisition might occur and
be propagated (e.g. historical and societal biases having
impact on the demographic composition of a criminal
database). Consequently, demographic bias estimation in
biometric identification is an interesting and important
item for future research.

Classification and estimation Scientific literature predomi-
nantly studied face as the biometric characteristic, since
the facial region contains rich information from which
demographic attributes can be estimated. Several studies
showed substantial impact of sex and race on the accu-
racy of demographic attribute classification. In particular,

numerous commercial algorithms exhibited significantly
lower accuracy w.r.t. dark-skinned female subjects (see
e.g. [74], [80]). Research on classification of sex from
iris and periocular images exists, but biases in those
algorithms have not yet been studied. Additionally, it
is not clear if such classifiers rely on actual anatomical
properties or merely the application of mascara [140].

Quality assessment Most existing studies conducted exper-
iments using fingerprint-based biometrics. This could
be partially caused by the standardisation of reliable
fingerprint quality assessment metrics [141], whereas
this remains an open challenge for the face character-
istic [142]. The existing fingerprint quality assessment
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TABLE II: Summary of studies concerning bias mitigation in biometric systems.

Reference Characteristic Algorithm(s) Method(s)

Guo et al. [63] Face Age classification Dynamic classifier selection based on the demographic attributes.
Klare et al. [67] Face Verification, identification Balanced training dataset or dynamic matcher selection based on the demographic attributes.
Guo et al. [115] Face Verification, identification Imbalanced learning.
Ryu et al. [116] Face Sex and race classification Twofold transfer learning, balanced training dataset.
Hasnat et al. [117] Face Verification Imbalanced learning.
Deb et al. [75] Face Verification, identification Training fine-tuning.
Michalski et al. [76] Face Verification Dynamic decision threshold selection.
Alvi et al. [118] Face Sex, age, and race classification Bias removal from neural network embeddings.
Das et al. [119] Face Sex, age, and race classification Multi-task neural network with dynamic joint loss.
Acien et al. [120] Face Verification, identification Suppression of deep learning features related to sex and race.
Amini et al. [121] Face Detection Unsupervised learning, sampling probabilities adjustment.
Lu et al. [79] Face Verification Curating training data (noisy label removal) using automatic sex estimation and clustering.
Terhörst et al. [122], [123] Face Sex and age classification Suppression of demographic attributes.
Gong et al. [124] Face Verification; sex, age, and race classification Disentangled representation for identity, sex, age, and race reduces bias for all estimations.
Kortylewski et al. [125] Face Verification Synthetic data use in algorithm training.
Krishnapriya et al. [87] Face Verification Cohort-dependent decision thresholds.
Srinivas et al. [90] Face Verification Score-level fusion of algorithms.
Vera-Rodriguez et al. [91] Face Verification Covariate-specific or covariate-balanced training.
Wang et al. [126] Face Verification Reinforcement learning, balanced training datasets.
Robinson et al. [95] Face Verification, identification Learning subgroup-specific thresholds mitigate the bias and boost overall performance.
Bruveris et al. [127] Face Verification Weighted sampling and fine-grained labels.
Smith et al. [128] Face Sex and age classification Data augmentation for model training.
Terhörst et al. [129] Face Verification Individual fairness through fair score normalisation.
Terhörst et al. [130] Face Verification, identification Comparison-level bias-mitigation by learning a fairness-driven similarity function.

Gottschlich et al. [131] Fingerprint Verification, identification Modelling fingerprint growth and rescaling.
Preciozzi et al. [109] Fingerprint Quality, verification Rescaling and bi-cubic interpolation as preprocessing.

Bekele et al. [132] Unconstrained Soft-biometric classification Weighing to compensate for biases from imbalanced training dataset.
Wang et al. [133] Unconstrained Classification Introduces concepts of dataset and model leakage; adversarial debiasing network.

studies consistently indicated that the extreme ranges
of the age distribution (infants and elderly) can pose a
challenge for current systems [108]. Correlations between
the quality metrics of facial images (obtained using
state-of-the-art estimators) and demographic covariates
were recently pointed out in a preliminary study [98].
Additional non-obvious, hidden biases can also occur. For
example, the presence of eyeglasses [143], [144] or con-
tact lenses [145] lowers the sample quality and biometric
performance under objective metrics in iris recognition
systems. The demographics disproportionately afflicted
with myopia (i.e. most likely to wear corrective eyewear)
are those from “developed” countries and East Asia [146].
Admittedly, the inability of the algorithms to compensate
for the presence of corrective eyewear might be argued
not to be a bias per se. This argument notwithstanding,
specific demographic groups could clearly be disadvan-
taged in this case – either by increased error rates or
the requirement for a more elaborate (especially for
contact lenses) interaction with the acquisition device.
Issues such as this one push the boundaries of what
might be considered biased or fair in the context of
biometric systems and constitute an interesting area of
future technical and philosophical research.

In addition, it is necessary to point out potential issues in
surveyed studies, such as:

• Differences in experimental setups, used toolchains and
datasets, training-testing data partitioning, imbalanced
datasets etc.

• Statistical significance of the results due to relatively
small size of the used datasets in most cases (except
e.g. [52], [107]).

• Lack of a single definition of bias/fairness (see also
subsection IV-A), as well as a standardised methodology
and metrics for conducting evaluations.

• Difficulty of sufficiently isolating the influence of demo-
graphic factors from other important covariates (e.g. pose
and illumination).

• Potential for bias propagation from previous steps of the
pipeline (e.g. data acquisition).

Nevertheless, some results appear to be intuitive, e.g. worse
accuracies for women. These could be due to numerous
reasons, such as: larger intra-class variations due to make-
up [147], occlusion by hairstyle and accessories, or pose differ-
ences due to women being shorter than men and cameras being
calibrated with the height of men. Likewise, lower sample
quality of infant fingerprints makes sense due to anatomical
constraints and the fact that the size of the fingerprint area is
considered as a relevant factor for fingerprint sample quality.
In order to acquire high-quality fingerprint samples from very
young data subjects, specialised hardware may be necessary
(see e.g. [148]).

D. Mitigation

Table II summarises the existing research in the area of
bias mitigation in biometrics. Similarly to above, related work
here focuses predominantly on face as biometric characteristic.
In this context, mainly recognition and classification algo-
rithms have been analysed. Generally speaking, the existing
approaches can be assigned to following categories:
Training Learning-based methods have experienced a tremen-

dous growth in accuracy and popularity in recent years.
As such, the training step is of critical importance for
the used systems and mitigation of demographic bias.
The existing techniques mainly rely on demographically
balanced training datasets (e.g. [92]) and synthetic data to
enhance the training datasets (e.g. [125]), as well as learn-
ing specialised loss or similarity functions (e.g. [130]). A
number of balanced training datasets has been released
to the research community, as shown in table III.
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Dynamic selection Deviating from preventing demographic
bias, some methods attempted to employ a bias-aware
approach. Examples in this category include dynamic
selection of the recognition algorithms (e.g. [63]) or
decision thresholds (e.g. [87]) based on demographic
attributes of the individual subjects.

In addition to the categories above, other approaches may
be considered in the context of bias mitigation. For exam-
ple, modelling of factors such as fingerprint growth can be
used to improve the biometric recognition performance for
children (see e.g. [109]) and to mitigate the effects of ageing
(see e.g. [149]). Other examples include de-identification and
anonymisation methods (see e.g. [150], [151]), whose primary
use case is privacy-protection in biometrics. Such methods
aim to remove, change, or obfuscate certain information (e.g.
demographics) either from the image (e.g. [152]) or feature
(e.g. [120], [153]) domain, often through a form of adversarial
learning. One could hypothesise that a system trained on such
data might not exhibit biases w.r.t. to the de-identified demo-
graphic covariates. However, the validity of such hypotheses
has not yet been ascertained experimentally.

TABLE III: Summary of existing datasets for bias-related
research in biometrics.

Reference Characteristic Size (images) Details

Ricanek et al. [154] Face 55.134 Ageing research database with de-
mographic labels.

Azzopardi et al. [155] Face 946 Subset of FERET dataset balanced
w.r.t. sex.

Buolamwini et al. [74] Face 1.270 Images of parliamentarians bal-
anced w.r.t. sex and race. One im-
age per subject, i.e. not suitable for
biometric recognition.

Alvi et al. [118] Face 14.000 Scraped images balanced w.r.t.
race.

Alvi et al. [118] Face 60.000 Subset of IMDB dataset balanced
w.r.t. sex and race.

Morales et al. [153] Face 139.677 Subset of MegaFace dataset bal-
anced w.r.t. sex and race.

Merler et al. [156] Face 964.873 Demographic and geometric anno-
tations for selected images from
YFCC-100M dataset.

Hupont et al. [83] Face 10.800 Subset of CWF and VGG datasets
balanced w.r.t. sex and race.

Kärkkäinen et al. [157] Face 108.501 Subset of YFCC-100M dataset bal-
anced w.r.t. sex, race, and age.

Wang et al. [92] Face 40.607 Subset of MS-Celeb-1M dataset
balanced w.r.t. race.

Robinson et al. [95] Face 20.000 Subset of LFW dataset balanced
w.r.t. sex and race.

Albiero et al. [96] Face 42.134 Subset of AFD dataset balanced
w.r.t. sex.

IV. DISCUSSION

In this section, several issues relevant to the topic of this
article are discussed. Concretely, subsection IV-A addresses
the topic of algorithmic fairness in general, while subsec-
tion IV-B does so in the context of biometrics specifically.
Subsection IV-C illustrates the importance of further research
on algorithmic bias and fairness in biometrics by describing
the social impact of demographically biased systems.

A. Algorithmic Fairness in General

The challenge of fairness is common in machine learning
and computer vision, i.e. it is by no means limited to bio-
metrics. A survey focusing on issues and challenges associ-
ated with algorithmic fairness was conducted among industry

practitioners by Holstein et al. [158]. For a comprehensive
overview of bias in automated algorithms in general, the reader
is referred to e.g. [18], [159]. In addition to algorithmic fair-
ness, algorithmic transparency, explainability, interpretability,
and accountability (see e.g. [160], [161], [162], [163]) have
also been heavily researched in recent years both from the
technical and social perspective. The current research in the
area of algorithmic fairness concentrates on the following
topics:

• Theoretical and formal definitions of bias and fairness
(see e.g. [18], [164], [165]).

• Fairness metrics, software, and benchmarks (see
e.g. [166], [167], [168]).

• Societal, ethical, and legal aspects of algorithmic
decision-making and fairness therein (see e.g. [1], [169],
[170], [171], [172]).

• Estimation and mitigation of bias in algorithms and
datasets (see e.g. [173], [174], [175], [176], [177], [178]).

Despite decades of research, there exists no single agreed
coherent definition of algorithmic fairness. In fact, dozens of
formal definitions (see e.g. [164], [165]) have been proposed
to address different situations and possible criteria of fairness7.
Certain definitions, which are commonly used and advocated
for, are even provably mutually exclusive [179]. Therefore,
depending on the definition of fairness one chooses to adopt,
a system can effectively always be shown to exhibit some
form of bias. As such, the “correct” approach is essentially
application-dependent. This in turn necessitates a keen domain
knowledge and awareness of those issues from the system
operators and stakeholders, as they need to select the defi-
nitions and metrics of fairness relevant to their particular use
case. Research in this area strongly suggests that the notion
of fairness in machine learning is context-sensitive [180],
[181]; this presumably also applies to the field of biometrics,
especially for machine learning-based systems. In the next
subsection, the notions of fairness and bias are discussed in
the context of biometrics specifically based on the literature
surveyed in section III.

B. Algorithmic Fairness in Biometrics

Although the topic of demographic bias and fairness in
biometrics has emerged relatively recently, it has quickly es-
tablished itself as an important and popular research area. Sev-
eral high-ranking conferences featured special sessions8,9,10,
NIST conducted large-scale evaluations [52], while ISO/IEC
is currently preparing a technical report on this subject [45].
Likewise, a significant number of scientific publications has
appeared on this topic (surveyed in section III). Existing
studies concentrated on face-based biometrics – more research
is urgently needed for other biometric characteristics, e.g.
fingerprints [182].

7See also https://towardsdatascience.com/a-tutorial-on-fairness-in-
machine-learning-3ff8ba1040cb and https://fairmlbook.org/ for visual
tutorials on bias and fairness in machine learning.

8https://sites.google.com/view/wacv2020demographics
9https://sites.google.com/site/eccvbefa2018
10https://dasec.h-da.de/wp-content/uploads/2020/01/EUSIPCO2020-

ss bias in biometrics.pdf
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Existing studies primarily address the following aspects:

1) Evaluations with the aim of quantitatively ascertaining
the degree of demographic bias in various biometric
algorithms.

2) Methods which seek to mitigate the effects of demo-
graphic bias in various biometric algorithms.

Existing bias estimation studies have uncovered new trends
w.r.t. algorithmic bias and fairness in biometric algorithms
(recall subsection III-C). However, it should be noted, that:

1) In many cases the biases were algorithm-specific, i.e.
while given the same benchmark-dataset some algorithms
exhibited a bias (e.g. lower biometric performance for a
certain demographic group), others did not. In aggregate,
however, the existing studies did seem to agree on certain
points, as described in subsection III-C.

2) While a high relative increase in error rates for a certain
demographic group may appear quite substantial, its im-
portance in absolute terms could be negligible, especially
for very accurate algorithms which hardly make any
errors whatsoever [52].

Those caveats notwithstanding, the commitment of the
academic researchers and commercial vendors to researching
algorithmic fairness is especially important for the public
perception of biometric technologies. The field of algorithmic
fairness in the context of biometrics is in its infancy and a large
number of issues are yet to be comprehensively addressed (cf.
subsection IV-A):

1) Limited theoretical work has been conducted in this field
specifically focusing on biometrics. Indeed, the majority
of publications surveyed in section III do not approach the
notions of bias and fairness rigorously; rather, they tend
to concentrate on an equivalent of some of the simpler
statistical definitions, such as group fairness and error rate
parity. Extending the existing estimation and mitigation
works, for example to consider other and more complex
notions of fairness (see e.g. [129]) could be seen as
important future work in the field. Likewise, investigating
trade-offs between biometric performance, fairness, user
experience, social perceptions, monetary costs, and other
aspects of the biometric systems might be of interest.

2) In addition to empiric studies (especially in the case of
bias mitigation, see subsection III-D), stricter theoretical
approaches need to be pursued in order to provably
demonstrate the bias-mitigating properties of the pro-
posed methods.

3) Isolating the effects of the demographic factors from
other confounding factors (i.e. the environmental and
subject-specific covariates, such as illumination and use
of accessories) is a challenging task, which is not suffi-
ciently addressed in many existing studies. An example
of a study which partially addressed those issues in a
systematic manner is the work of Grother et al. [52].

4) More complex analyses based on demographic attributes
and combinations thereof (intersectionality) could be
conducted for a more detailed and nuanced view of
demographic biases in biometric systems.

5) Comprehensive independent benchmarks utilising vari-
ous algorithmic fairness measurement methodologies and
metrics are, as of yet, lacking. Only recently, in [52],
first independent benchmarks of biometric recognition
algorithms have been conducted. Similar and more ex-
tensive benchmarks for other biometric algorithms (recall
subsection III-A) are needed.

6) Large-scale datasets designed specifically for bias-related
research need to be collected. The existing datasets only
pertain to face-based biometrics (see table III).

7) Humans are known to exhibit a broad range of bi-
ases [14], [25]. The influence of those factors on bio-
metric algorithm design, interactions with and use of
biometric systems, as well as perceptions of biometric
systems could be investigated.

8) Most of the surveyed studies did not explicitly provide
information about ethics approval. Future works could
improve on those practices, especially considering the
sensitive nature of the research topic at hand.

In the next subsection, the possible consequences of failing
to appropriately address the issues of algorithmic fairness in
biometrics are discussed.

C. Social Impact
Numerous studies described the potential of real harms

as a consequence of biased algorithmic decision-making sys-
tems [169], [183] in general. Regarding biometric systems in
particular, facial recognition technologies have been the main
focus of such discussions (see e.g. [184]). Concering the no-
tions of bias and fairness, in addition to being context-sensitive
(recall subsection IV-A), one might argue the impact assess-
ments to also be purpose-sensitive. Specifically, depending on
application scenario, the impact and importance of systemic
biases might differ significantly. As an example, consider an
application of biometrics in cooperative access control systems
or personal devices. A demographic bias in such a system
might cause a certain demographic group to be inconvenienced
through additional authentication attempt(s) being necessary
due to false negative errors. On the other hand, the stakes
are much higher in e.g. a state surveillance scenario. There,
demographic biases could directly cause substantial personal
harms, e.g. higher (unjustified) arrest rates [12], due to false
positive errors. At the same time, it is also clear that biometric
recognition technology can be highly accurate. Taking the
recently contested facial recognition as an example, given
prerequisites such as a high-resolution camera, proper lighting
and image quality controls, as well as high-quality comparison
algorithms, the absolute error rates can become vanishingly
small [52], thereby potentially rendering the relative imbalance
of error rates across demographic groups insignificant.

It should be noted that there are no indications of the
algorithmic biases in biometrics being deliberately put into
the algorithms by design; rather, they are typically a result
of the used training data and other factors. In any case, one
should also be mindful, that as any technology, biometrics
could be used in malicious or dystopian ways (e.g. privacy
violations through mass-surveillance [185] or “crime predic-
tion” [186]). Consequently, a framework for human impact
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assessments [187] should be developed for biometrics as
soon as possible. A pro-active and cognizant approach could
foster awareness among the citizens and policymakers, as
well as contribute to minimising potential negative perception
of biometric technology and innovation by individuals and
society as a whole.

In a broader context, algorithmic bias and fairness is one
of the topics in the larger discourse on ethical design in
artificial intelligence (AI) systems [188], most prominently
encompassing:

• Transparency,
• Accountability,
• Explainability, and
• Fairness.

Currently, the legal and societal scrutiny of the technologies
utilising automated decision systems seems to be insufficient.
However, recent legislation in the European Union [189], [190]
constitutes a step in the that direction. Below, several social
and technological provisions, which might be considered in
this context, are listed.

• Carefully selecting the data used to train the algorithms
is the first and perhaps the most important step: inher-
ent biases in training data should be avoided wherever
possible. Furthermore, the size of the dataset matters –
some systems have been reported to be trained on very
small datasets (in the order of thousands of items), which
is usually wholly insufficient to show that an approach
generalises well.

• Higher degree of transparency and/or independent insight
into data and algorithms, as well as validation of the
results could be established to foster the public trust and
acceptance of the systems.

• Thresholds for acceptable accuracy (i.e. how much the
systems can err) could be established legally (potentially
in a system purpose-sensitive manner), as well as re-
viewed and validated periodically.

• Special training of the systems’ personnel could be es-
tablished to make them aware of the potential issues and
to establish proper protocols for dealing with them.

• Due diligence could be legally expected from vendors of
such systems, i.e. in reasonably ensuring some or all of
aforementioned matters and rectifying problems as they
come up. Additionally, certain accountability provisions
could be incorporated to further facilitate this.

The issues of fairness (including algorithmic fairness) are
complicated from the point of view of the legislation – a some-
what deep understanding of statistics, formal fairness defini-
tions, and other concepts is essential for an informed discourse.
Furthermore, the ethical and moral perceptions and decisions
are not uniform across different population demographics
and by geographical location (see e.g. Awad et al. [191]).
This reinforces an important dilemma regarding the regulation
of automated decision systems – since many situations are
morally and ethically ambiguous to humans, how should they
be able to encode ethical decision-making into laws? Once that
issue is somehow surmounted, there also remains the issue of

feasibility of technical solutions, as described in the previous
two subsections.

Currently, many laws and rules exist (international treaties,
constitutions of many countries, and employment law) which
aim to protect against generic discrimination on the basis of
demographics [192]. However, historically, the enforcement of
those has been fraught with difficulties and controversies. In
this context, the algorithmic decision systems are merely one
of the most recent and technologically advanced cases. The
policymakers and other stakeholders will have to tackle it in
the upcoming years in order to develop a legal framework
similar to those already governing other areas and aspects of
the society [193].

V. SUMMARY

This article has investigated the challenge of demographic
bias in biometric systems. Following an overview of the topic
and challenges associated therewith, a comprehensive survey
of the literature on bias estimation and mitigation in biometric
algorithms has been conducted. It has been found that demo-
graphic factors can have a large influence on various biometric
algorithms and that current algorithms tend to exhibit some
degree of bias w.r.t. certain demographic groups. Most effects
are algorithm-dependent, but some consistent trends do also
appear (as discussed in subsection III-C). Specifically, many
studies point to a lower biometric performance for females
and youngest subjects in biometric recognition systems, as
well as lower classification accuracy for dark-skinned females
in classification of demographic attributes from facial images.
It should be noted that many of the studies conducted their
experiments using relatively small datasets, which emphasises
the need for large-scale studies. In general, a broad spectrum
of open technical (and other) challenges exists in this field
(see section IV).

Biased automated decision systems can be detrimental to
their users, with issues ranging from simple inconveniences,
through disadvantages, to lasting serious harms. This rele-
vance notwithstanding, the topic of algorithmic fairness is still
relatively new, with many unexplored areas and few legal
and practical provisions in existence. Recently, a growing
academic and media coverage has emerged, where the over-
whelming consensus appears to be that such systems need to
be properly assessed (e.g. through independent benchmarks),
compelled to some degree of transparency, accountability,
and explainability in addition to guaranteeing some fairness
definitions. Furthermore, it appears that, in certain cases, legal
provisions might need to be introduced to regulate these
technologies.

Automatic decision systems (including biometrics) are ex-
periencing a rapid technological progress, thus simultaneously
holding a potential of beneficial and harmful applications,
as well as unintentional discrimination. Zweig et al. [17]
even argued that the issues (including, but not limited to
bias and fairness) concerning algorithmic decision systems
are directly related to the so-called “quality of democracy”
measure of countries. As such, developing proper frameworks
and rules for such technologies is a large challenge which
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the policymakers and the society as a whole must face in the
upcoming future [194], [195].
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