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Abstract

In this work, a method to detect morphed face images
based on Photo Response Non-Uniformity (PRNU) is pre-
sented. More specifically, the variance of PRNU-based fea-
tures across image cells is estimated to distinguish bona fide
from morphed and potentially post-processed morphed face
images. The proposed morph detector is shown to be ro-
bust against post-processing techniques, which are likely to
be applied to conceal the morphing process, e.g. histogram
equalisation or image sharpening. Tested on a database
of 961 bona fide and 2,414 automatically morphed face
images, a detection equal error rate (D-EER) of 10.5% is
obtained over all investigated attacks, including unaltered
morphed images and various post-processing techniques.

1. Introduction

Automated face recognition [36, 17] represents a long-
standing field of research in which a major break-through
has been achieved by the introduction of deep neural net-
works [33, 24]. Resulting performance improvements
paved the way for deployments of face recognition tech-
nologies in diverse application scenarios, ranging from mo-
bile device access control to Automated Border Control
(ABC). However, recently researchers found that the in-
tended generalisability of deep face recognition systems
also increases their vulnerability against attacks, e.g. spoof-
ing attacks (a.k.a. presentation attacks) [22]. Most notably,
a specific attack against face recognition systems based on
morphed face images has been proposed in [3].

Morphing techniques can be used to create artificial bio-
metric samples, which resemble the biometric information
of two (or more) individuals in image and feature domain.
In order to morph two face images, an attacker usually de-
fines corresponding landmarks and a triangulation of land-

(a) Subject 1 (b) Morph (c) Subject 2

Figure 1: Examples for bona fide and morphed face images

marks is done on both images. The landmarks are then av-
eraged to a single set of landmarks and both images are
warped according to the resulting triangulation. Finally,
alpha-blending is performed. Realistic morphed face im-
ages can be generated by non-experts employing easy-to-
use face morphing software which can be purchased at a
reasonable price, e.g. FantaMorph1. Fig. 1 depicts an ex-
ample of morphing two face images.

It has been shown that morphed face images are real-
istic enough to fool human examiners [4]. This means,
there is a risk that morphed biometric images are infiltrated
to a biometric recognition system at enrolment, e.g. dur-
ing the issuance process of electronic travel documents. In
[3] commercial face recognition software tools have been
exposed to be highly vulnerable to attacks based on mor-
phed face images. This means that the subjects contribut-
ing to the morphed image were both (or all) successfully
matched against that single enrolled morphed image. These
findings have been confirmed by other researchers, e.g. in
[32]. In their vulnerability analysis, researchers used deci-
sion thresholds yielding a False Match Rate (FMR) of 0.1%,
following the guidelines provided by the European Agency
for the Management of Operational Cooperation at the Ex-
ternal Borders (FRONTEX) [1].

1FantaMorph: http://www.fantamorph.com/
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In the recent past, researchers have presented different
approaches to distinguish bona fide from morphed face im-
ages, see Sect. 2. Proposed approaches either processes a
single potentially morphed image, i.e. no-reference morph
detection, or a potential morph together with a trusted live
capture from an authentication attempt, i.e. differential
morph detection. In the no-reference scenario different me-
dia forensic concepts have been applied [23, 16, 2]. Adapta-
tions of such techniques, which are designed to detect dig-
ital forgeries, revealed promising results for the detection
morphed face images. In particular, a PRNU-based detec-
tion of morphed face images was introduced in [2]. The
extraction of the PRNU and an analysis of its distributions
across image cells has been reported to reliably detect mor-
phed face images, while the approach fails if image post-
processing, e.g. histogram equalisation, is applied to gener-
ated morphs.

The work presented in this paper was inspired by the ap-
proach of [2] and proposes a PRNU variance analysis for
morphed face image detection. It is shown that an increased
variance of different PRNU statistics across image cells is
a reliable indicator for image morphing. Further, the im-
proved PRNU-based morph detector is shown to be resis-
tant against common image post-processing methods. Fi-
nally, the presented approach is expected to be more robust
against arbitrary post-processings, since it analyses image
block interrelations rather than image features which might
specifically result from a distinct morphing process applied
to a certain face database.

This paper is organized as follows: related works are
briefly discussed in Sect. 2. Fundamentals of PRNU extrac-
tion are explained in Sect. 3. The proposed morph detection
method is described in detail in Sect. 4. Experimental re-
sults are reported in Sect. 5. Finally, conclusions and future
works are summarized in Sect. 6.

2. Related Work
The topic of face morph detection has sparked the inter-

est of numerous research laboratories working in the field of
biometrics. Efforts to define evaluation metrics for morph
detection and vulnerability analysis have already been made
[28, 10], see Sect. 5. A recent overview on conducted
vulnerability analyses and morph detection methods can be
found in [20]. Presented approaches can be coarsely cat-
egorized with respect to the considered morph detection
scenario. The majority of works assume the challenging
no-reference scenario while some implement a differential
morph detection which is motivated by the fact that trusted
live captures are available in ABC scenarios.

A differential morph detection method referred to as de-
morphing was proposed in [5]. Within this approach a
trusted live capture is aligned to a potential morph and sub-
tracted from it in the image domain. The resulting image

is then compared against the trusted live capture. A morph
is detected if the biometric decision changes from “accept”
to “reject”. Robustness of de-morphing against slight face
pose variations has been confirmed in [6]. Nevertheless, the
authors note that in an ABC scenario the performance of
de-morphing might degrade due to potential variations of
quality and environmental conditions.

Several researchers have suggested the use of gen-
eral purpose texture descriptors, e.g. Local Binary Pat-
terns (LPB) or Binarized Statistical Image Features (BSIF),
which have been employed widely for biometric recogni-
tion. Machine learning-based classifiers, e.g. Support Vec-
tor Machines (SVMs), are either trained directly on ex-
tracted feature vectors for no-reference morph detection
[25, 29, 14] or differences between feature vectors can (ad-
ditionally) be employed in a differential scenario [32]. Also,
face-specific features such as differences between landmark
positions or angles could be employed in a differential sce-
nario which so far has been shown to reveal rather mod-
erate detection performance [27]. Depending on the fea-
ture representation of texture descriptors the inputs of clas-
sifiers have to be adapted, e.g. for Scale-Invariant Fea-
ture Transform (SIFT) the number of extracted keypoints
has been shown to be suitable for the task of morph de-
tection [16, 32]. Score level fusions of different types of
features have been proposed, too [30]. In particular, in
the no-reference scenario classifiers may overfit to distinct
micro texture features. These can be dataset-specific fea-
tures which are altered or introduced by the applied mor-
phing process. It has been shown that the performance of
morph detectors based on general purpose texture descrip-
tors might significantly decrease if training and test images
stem from a different source, i.e. face database [31].

The use of convolutional neuronal networks for no-
reference morphed face detection has been proposed by
different researchers reporting promising results [26, 35].
Again, with these methods there is potentially a prob-
lem of overfitting. In particular, resulting deep classifiers
may favour image locations where artefacts, e.g. shadows
around the iris region, are likely to appear due to an imper-
fect automated morph creation process. Further, published
approaches have been trained and tested for a single morph
generation method, i.e. generalizability still has to be eval-
uated.

Focusing on the no-reference scenario diverse ap-
proaches related to media forensics have been presented. In
different works, the detection of JPEG double-compression
artefacts has been suggested for the purpose of morph de-
tection [19, 10, 20]. However, the presence of such arte-
facts implies a strong assumption on the image format of
face images used for morph generation as well as the re-
sulting morphed face image. The International Civil Avi-
ation Organization (ICAO) suggests face image data to be



stored in accordance with the specifications established by
the International Organization for Standardization (ISO) in
[12]. More specifically, the ICAO recommends face im-
ages to be stored in electronic travel documents at an av-
erage compressed sizes of 15kB to 20kB in JPEG or JPEG
2000 format [11]. Hence, depending on the image size and
the employed compression algorithm the detection of JPEG
double-compression artefacts might not be feasible. In [34]
a morph detection method based on reflection analysis in
face images is presented. The lightning direction is esti-
mated based on reflections detected in the eyes of a po-
tentially morphed image. Subsequently, reflections on the
nose of the face are analysed. However, ISO requires hot
spots and specular reflections to be absent in face images
used in electronic travel documents. In particular, diffused
lighting, multiple balanced sources or other lighting meth-
ods shall be used, i.e. a single bare “point” light source
like a camera mounted flash is not acceptable for imaging
[12]. Morph detection methods based on continuous image
degradation have been proposed in [23, 16]. The basic idea
behind these methods is to continuously degrade the image
quality, e.g. by using JPEG compression, to create multiple
artificial self-references of a face image. The distances from
these references to the original image are then analysed for
morph detection. Additionally, PRNU-based morph detec-
tion has been proposed in [2]. This approach is described in
more detail in Sect. 4.

Despite promising results reported in many works a re-
liable detection of morphed face images still represents
an open research challenge. Note that the generalizabil-
ity/robustness of published approaches has not been shown,
as these have been mostly trained and tested on single
databases using a single morph generation algorithm. Fur-
ther, the likely application of image post-processing tech-
niques, e.g. image sharpening, is neglected in most works.
Lastly, so far there are no publicly available database of
bona fide and morphed face images and no publicly avail-
able morph detection algorithms.

(a) Original (b) PRNU

Figure 2: Extracted and enhanced PRNU for an exemplary
face image.

(a) Bona fide (b) Morph (c) EQU

(d) SCL50 (e) SCL75 (f) SHRP

Figure 3: Averaged PRNU DFT magnitude spectra of bona
fide images (a), morphed images (b) and post-processed
morphed images (c to f).

3. PRNU Extraction and Characteristics
Digital image forensics aims at acquiring knowledge on

visual contents and acquisition devices by evaluating the
traces that are left on the data during the acquisition and in
the subsequent processing. The PRNU of imaging sensors
[7] emerged as an important forensic tool. It can be used
for a variety of important tasks, such as device identifica-
tion, device linking, recovery of processing history, and de-
tection of digital forgeries. The PRNU is an intrinsic prop-
erty of all digital imaging sensors, which is characterised
by slight variations among individual pixels in their abil-
ity to convert photons to electrons. Consequently, every
sensor casts a weak noise-like pattern onto every image it
captures. This noise-like pattern can be considered as an
unintentional stochastic spread-spectrum watermark.

In [7] Fridrich presents an approach on how to extract
the PRNU noise residual from an image. For each image I
the noise residual WI is estimated as described in Eq. (1),

WI = I − F (I) (1)

where F is a denoising function which filters out the sensor
pattern noise. In this work, the denoising filter proposed by
Mihcak et al. [21] is used in conjunction with a Filtering
Distortion Removal (FDR) PRNU enhancement proposed
by Lin et al. [18]. Said enhancement aims at improving the
SNR of the extracted PRNU noise residual WI in a two step
process by abandoning certain components that are severely
contamined by filtering errors introduced during the denois-
ing of images. For further details on the denoising filter and
FDR PRNU enhancement we refer to [21, 18]. Fig. 2 shows
the extracted and enhanced PRNU for an exemplary face
image.

The PRNU offers some essential advantages for the de-
tection of morphed face images. First of all, as stated by
Fridrich et al. [8], all digital image sensors exhibit PRNU,
which makes this sensor noise virtually present in every



(a) Bona fide images (b) Morphed images

Figure 4: Illustration of variations across DFT magnitude
spectra in morphed images compared to bona fide ones for
4× 4 image cells (average of all images in dataset).

captured image. Furthermore, it is independent from the
scene content and even robust against typical processing
procedures like lossy compression or gamma correction,
and it is even reported to be robust against high quality
printing and scanning [9].

These criteria make the PRNU well suited for the morph
detection scenario investigated in this work, because it
offers significant advantages over analysing other high-
frequency image components: First and foremost the PRNU
is present in every image acquired with a digital camera,
hence virtually every face image. In addition, in princi-
ple the PRNU is unrelated to the image content, but its
high-frequency components might interfere with the PRNU.
However, this interference can be attenuated by different
PRNU enhancement approaches.

The spectral characteristics of the PRNU reveal whether
an image has been subject to further processing [7]. Since
face morphing usually comprises different non-linear warp-
ing and averaging operations, the distribution of the PRNU
values is affected by these operations, as previously shown
in [2]. The PRNU’s DFT magnitude spectrum of mor-
phed images shows a reduction of the high-frequency com-
ponents as well as a compression of the whole spectrum,
which is illustrated in Fig. 3b.

Debiasi et al. [2] furthermore investigated the effects of
various post-processings on the PRNU’s DFT magnitude
spectrum. They applied four different post-processings to
the morphed face images: Histogram equalisation (EQU),
downscaling and subsequent upscaling (SCL50, SCL75) and
sharpening (SHRP). More details are given in Sect. 5, while
the effects of these operations are presented in Fig. 3. One
can observe that the DFT spectra of SCL50 and SCL75 are
clearly discriminable from bona fide images, whereas the
spectra of SHRP and especially EQU show a high similar-
ity to bona fide images.

4. Detection of Morphed Face Images

The PRNU-based morph detection system proposed by
Debiasi et al. in [2] aims at exploiting the spectral alter-
ations of the PRNU introduced by the non-linear warping
during the face morphing process and therefore discrimi-
nate between bona fide and morphed images. Furthermore,
the discrimination is performed in no-reference manner.

The morph detection system consists of five major com-
ponents: (A) PRNU extraction, (B) PRNU splitting, (C) cel-
l-wise feature extraction, (D) cell aggregation and the
(E) decision. In short, the PRNU is extracted from a face
image and divided into cells. Thereafter, the DFT magni-
tude spectrum is computed for each cell, whereof different
features P are derived. By averaging the extracted features
for each cell an aggregated score S is obtained. Finally, the
system performs a binary decision (bona fide or morphed)
based on a simple threshold, which can be determined by
analysing the score distribution of bona fide images.

4.1. Variance Analysis

In this work, the approach of [2] is extended by propos-
ing an analysis of the PRNU variance for morphed face
image detection. Due to the morphing process’s nature of
producing inhomogeneous alterations across different im-
age regions, an increased variance of the PRNU signal is
expected across image cells. Fig. 4 shows the variations
of the DFT magnitudes across different image cells of bona
fide and morphed images. These local variations can be use-
ful as a reliable indicator for image morphing. In order to
analyse the variance of the PRNU, we propose some adap-
tations to Debiasi et al.’s [2] approach, which are presented
in the remainder of this section. The proposed system is
illustrated in Fig. 5.

4.1.1 Feature Extraction

In this work we propose to analyse the variance of two dis-
tinct features: Ppos and Pen. The first one, Ppos, has been
proposed in [2] and is based on the PRNU’s DFT magnitude
histogram. It represents the peak’s position (bin) within the
histogram and is obtained as follows:

Ppos = arg max
n=1...b

H(n), Pen =
∑
x∈M

|x|2 (2)

where b is the number of bins and H is the magnitude his-
togram of a cell. As the second feature, Pen, we propose
to compute the energy of the PRNU’s DFT magnitudes, as
defined in Eq. 2, where M are the DFT magnitudes within
a cell and x their respective values. Both features lead to a
scalar value P for each PRNU cell.
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Figure 5: Processing steps of the proposed PRNU-based morph detection system.

4.1.2 Cell Aggregation

In order to perform the variance analysis across all image
cells, we make use of two measures of dispersion. The vari-
ance, Svar, is given by

Svar = Var(P ) =
1

N

N∑
n=1

(Pn − P̄ )2 (3)

P̄ =
1

N

N∑
n=1

Pn, Sdisp =
Var(P )

P̄
(4)

The index of dispersion, Sdisp, or variance to mean ratio, is
given in Eq. 4, where N is the number of total PRNU cells,
Pn is the feature (scalar value) obtained for the PRNU cell
Cn, as described previously, and P̄ is the average feature
value for all PRNU cells C. In both cases, we obtain a
single scalar value S for each image.

4.2. Decision

As mentioned above, the PRNU-based morph detection
system proposed in [2] makes use of a simple thresholding
to determine if the presented image is a bona fide one or not.
It was shown that with this one dimensional decision it was
not possible to reliably detect some of the post-processed
morphed images, i.e. SHRP and in particular EQU.

Due to the large variety of possible unknown post-
processings, we decided to focus on the known properties
of bona fide images and to use this knowledge to our advan-
tage by simply deriving the mean variation B̄ from the bona
fide images. With this characteristic of bona fide images, we
are able to calculate the distance D of an investigated image
to bona fide images as

D = |S − B̄|, B̄ =
1

NB

NB∑
n=1

S (5)

where S is the result of the cell-aggregation, B̄ is the mean
variation of all bona fide images NB . The variation is either
Svar or Sdisp, whichever is used in the cell aggregation pro-
cessing step. The final decision for a presented face image
is taken by thresholding the distance D.

5. Experiments
In the following section, we describe the morphed face

data set investigated in this work. In addition, we report ex-
perimental results which comprise a morph detection per-
formance estimation and robustness under the presence of
common post-processing techniques.

5.1. Face Morphing Data Set

In order to allow a direct comparison of the morph detec-
tion performance with [2], experiments are performed on
a subset of the FRGCv2 face database, where 961 frontal
faces with neutral expression have been manually selected
as bona fide samples, which are all ICAO compliant accord-
ing to [12]. Two face images are morphed by applying the
dlib facial landmark detector [15] to both images. Subse-
quently, a Delaunay triangulation is computed, which forms
the basis for a subsequent affine transform to the sets of tri-
angles in both face images. The final morphed image is
generated by alpha blending of the two warped images us-
ing an alpha value of 0.5.

The face images are then segmented and normalized ac-
cording to eye coordinates detected by the dlib landmark
detector. The resulting normalised region of interest is
cropped to 320×320 pixels, to ascertain that the morphing
detection algorithm is only applied to the facial region.

In total, 2, 414 high quality morphed face images have
been automatically generated for pairs of subjects of same
gender using the OpenCV library, which are well within
the quality limits defined by ICAO and ISO/IEC standards.

(a) Bona fide (b) Morph (c) EQU

(d) SCL50 (e) SCL75 (f) SHRP

Figure 6: Data set examples: bona fide image (a), morphed
image (b) and post-processed morphs (c - f).



Table 1: Performance of proposed PRNU-based morph detectors
D-EER BPCER10 BPCER20

Algorithm Cells Morph EQU SCL50 SCL75 SHRP Morph EQU SCL50 SCL75 SHRP Morph EQU SCL50 SCL75 SHRP
Ppos|Smean

4

2.9% 33.0% 1.5% 0.1% 12.2% 0.2% 59.9% 0.1% 0.0% 16.5% 1.1% 71.8% 0.4% 0.0% 39.5%
Ppos|Svar 30.3% 49.6% 18.2% 42.0% 14.0% 75.1% 88.2% 45.5% 85.0% 24.9% 87.1% 94.0% 71.1% 91.6% 54.4%
Ppos|Sdisp 25.2% 49.7% 14.1% 33.3% 12.9% 64.1% 88.6% 27.6% 77.3% 21.4% 79.9% 93.9% 57.5% 87.3% 50.9%
Pen|Svar 19.4% 29.5% 4.3% 9.0% 2.3% 47.8% 51.6% 1.3% 7.9% 0.1% 69.3% 64.6% 3.5% 19.0% 0.6%
Pen|Sdisp 15.3% 30.3% 3.4% 5.5% 2.5% 30.2% 53.5% 0.6% 2.9% 0.1% 54.6% 67.0% 2.1% 6.1% 0.8%
Ppos|Smean

8

2.2% 33.8% 0.7% 0.0% 10.8% 0.1% 60.2% 0.0% 0.0% 11.7% 0.6% 71.5% 0.1% 0.0% 30.8%
Ppos|Svar 18.5% 49.8% 2.5% 34.9% 4.9% 36.7% 89.4% 0.7% 78.6% 1.3% 64.6% 94.4% 1.3% 88.3% 4.7%
Ppos|Sdisp 11.1% 49.8% 1.7% 16.5% 4.8% 12.4% 89.6% 0.1% 29.8% 1.2% 27.7% 94.5% 0.7% 51.3% 4.1%
Pen|Svar 20.2% 15.8% 4.2% 11.0% 1.3% 44.6% 20.3% 1.5% 12.3% 0.0% 66.0% 30.1% 3.5% 24.7% 0.2%
Pen|Sdisp 12.7% 16.8% 2.9% 4.5% 1.6% 16.2% 23.0% 0.5% 2.4% 0.0% 33.9% 33.1% 1.6% 4.1% 0.4%
Ppos|Smean

10

2.4% 34.9% 0.6% 0.0% 10.5% 0.0% 61.7% 0.0% 0.0% 11.2% 0.7% 71.6% 0.0% 0.0% 28.4%
Ppos|Svar 15.3% 50.0% 1.4% 32.2% 3.6% 25.9% 90.0% 0.1% 77.6% 0.9% 44.2% 95.0% 0.4% 88.7% 2.2%
Ppos|Sdisp 7.5% 50.0% 1.0% 11.9% 3.8% 5.4% 90.0% 0.1% 15.1% 1.0% 11.8% 95.0% 0.1% 27.8% 2.2%
Pen|Svar 18.3% 14.5% 3.5% 9.2% 1.1% 36.5% 17.5% 0.6% 8.3% 0.0% 56.4% 24.5% 2.3% 17.7% 0.0%
Pen|Sdisp 11.0% 15.9% 2.6% 3.8% 1.5% 11.9% 20.0% 0.1% 1.9% 0.0% 22.0% 29.0% 0.9% 3.1% 0.1%

Furthermore, Debiasi et al. [2] reported that the morphed
face images generated for this data set pose a severe risk for
a COTS face recognition system, since probe face images
from both contributing subjects can match with the morph
at high success rate. They obtained a Relative Morph Match
Rate (RMMR) and the ProdAvg Mated Morph Presentation
Match Rate (ProdAvg-MMPMR) of > 0.99, which empha-
sises the necessity of a robust morph detection system. For
more details on metrics for reporting the vulnerability of
face recognition systems to morphed faces, the reader is re-
ferred to [28].

Moreover, the data set also includes a variety of different
post-processing techniques applied to the morphed images:
EQU, SCL50, SCL75 and SHRP. They aim at hampering
the detection performance of the morph detection system.
Some examples for post-processed morphs, which are part
of the investigated data set, are shown in Fig 6.

5.2. Morph Detection Performance Evaluation

The morph detection performance is examined according
to metrics defined in ISO/IEC 30107-3 [13]: Attack Pre-
sentation Classification Error Rate (APCER) and bona fide
Presentation Classification Error Rate (BPCER). APCER
reports the proportion of attack presentations incorrectly
classified as bona fide presentations in a specific scenario.
BPCER, on the other hand, reports the proportion of bona
fide presentations incorrectly classified as presentation at-
tacks in a specific scenario. The operation point of the sys-
tem, where APCER = BPCER, is defined as detection equal
error rate D-EER. Furthermore, two additional operation
points, BPCER10 (where APCER = 10%) and BPCER20
(where APCER = 5%), are reported.

Tab. 1 summarises the obtained morph detection per-
formance in form of D-EER, BPCER10 and BPCER20
for images with (EQU, SCL50, SCL75, SHRP) and without
post-processing (Morph). The column Algorithm comprises
the combinations of extracted features P and aggregation

strategies S defined in Sect. 4. The column Cells contains
the cell splits of the investigated images. We focused on cell
splits of 4 × 4, 8 × 8 and 10 × 10 in this work due to the
improved results with higher cell counts reported in [2].

The proposed algorithm by Debiasi et al. in [2],
Ppos|Smean for 8×8 cells, serves as baseline and achieves a
D-EER performance of 2.2% for unaltered morphs, but fails
at detecting morphs post-processed with EQU at 33.8% and
shows a high performance decrease for detecting sharpened
morphs (SHRP) at 10.5%. Because the magnitude spectra
of SCL50, SCL75 and SHRP post-processing are quite dis-
tinct bona fide image’s ones, as it can be observed in Fig. 3,
they can be detected quite reliably in general. The remain-
ing algorithms are based on the variance analysis described
in Sect. 4.1.

The proposed Ppos|Svar and Ppos|Sdisp algorithms
show rather inconsistent results among the different post-
processings, especially they completely fail at detecting
EQU morphs. Since they are based on the DFT magnitude
histograms, they are highly vulnerable to histogram shifts
such as those caused by histogram equalisation (EQU),
leading to a D-EER of up to 50%. When looking at
Pen|Svar and Pen|Sdisp, one can immediately note the
degradation in unaltered morph detection of 11% in the best
case (compared to the baseline of 2.2%), as shown in Fig.
7a. However, a more stable performance across all post-
processed morphs is achieved. The highest performance
gains are achieved for EQU and SHRP with a D-EER of
14.5% and 1.1% respectively, as compared to the baseline
of 33.0% and 10.5%, which are illustrated in Fig. 7b and
7c. In general, the variance analysis based algorithms lead
to a trade off between unaltered morph detection and post-
processed morph detection. It enables the system to be
more robust against different attacks, while also increas-
ing the overall performance when all attacks are considered
(Morphs, EQU, SCL50, SCL75, SHRP). This can mainly be
attributed to the statistical variations caused by the morph-
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Figure 7: DET curves for PRNU-based morph detectors
(10× 10 cells).

ing procedure across the image, which are most prominent
in the Pen feature and can be captured best by the Sdisp

cell-aggregation strategy.
Thus, the overall best performing and most stable algo-

rithm is based on the proposed variance analysis, Pen|Sdisp

for 10 × 10 cells, is able to achieve respectable results
across all altered and unaltered morphed images and is ro-
bust against a wide variety of post-processing attacks aim-
ing at deteriorating the morph detection system. This ro-
bustness is a significant improvement over the baseline al-
gorithm proposed in [2], which is much more vulnerable
to post-processing attacks. Furthermore, the overall system
performance is also improved from 15.7% average D-EER
(baseline) to 10.5% D-EER (proposed algorithm), when
all altered and unaltered morphs are considered. A di-
rect comparison of both algorithms is presented in Fig. 7d
and Tab. 2, where it can be observed that both algorithms
have opposing strengths and weaknesses regarding the sin-
gle post-processing techniques. Hence, a fusion of both ap-
proaches might be beneficial for the overall performance of
the morph detection system.

Table 2: D-EER performance comparison of proposed
PRNU variance analysis based detector (Pen|Sdisp) with
baseline (Ppos|Smean) proposed in [2]. The column ALL
reports the D-EER including all attacks (Morph to SHRP).

D-EER
Algorithm Cells Morph EQU SCL50 SCL75 SHRP ALL
Ppos|Smean 8 2.2% 33.8% 0.7% 0.0% 10.8% 15.7%
Pen|Sdisp 10 11.0% 15.9% 2.6% 3.8% 1.5% 10.5%

Difference + 8.8% -17,9% +1,9% +3,8% -9,3% -5,2%

6. Conclusion and Future Work
When infiltrated during the enrolment process of a face

recognition system, morphed face images pose a serious se-
curity risk, in particular in the context of ABC. In this work,
a morph detector, which analyses the variance of PRNU-
based features across image cells, is proposed. In con-
trast to related work [2], the presented approach is shown
to be robust to diverse image post-processing techniques
and even improves the D-EER for all investigated attacks,
which include unaltered morphed images and various post-
processing techniques, to 10.5%.

Compared to many other schemes, the presented system
is expected to achieve high robustness, as it analyses rel-
ative changes of PRNU-based features across images re-
gions rather than distinct texture features. Such changes
inevitably occur if image morphing is applied. In order to
avoid artefacts, some morphing algorithms paste morphed
face regions within the convex hull of averaged landmarks
into the outer region of one of the contributing face images.
This would cause an even higher variance of PRNU fea-
tures across image regions resulting in improved detection
performance.

Future work will be focused on a more thorough anal-
ysis of the proposed approach, i.e. detection performance
will be evaluated for bona fide and morphed images created
from different face image databases using different morph
generation algorithms. A comparison of the presented sys-
tem against published face morph detectors will also be per-
formed in future work. Finally, the creation of a database
of printed and scanned (morphed) face images and a corre-
sponding evaluation of the presented morph detection meth-
ods in different scenarios is subject to future work.
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