Security of Biometric Systems

Christoph Busch

European Association for Biometrics (EAB) NBL, Norwegian University of Science and Technology - Gjøvik, Norway da/sec, Hochschule Darmstadt - CRISP, Germany

Iquique, Chile January 14, 2019

These slides are available at:

http://www.christoph-busch.de/about-talks-slides.html

Risks in Biometric Systems

Source: ISO/IEC JTC1 SC37 SD11 Reference Architecture

Security of Biometric Systems

Overview of attacks on a Biometric System

• Capture Device (1): Camera, CMOS-Chip, optical- / capacitive sensor

Source: ISO/IEC 30107-1

Inspired by N.K. Ratha, J.H. Connell, R.M. Bolle, "Enhancing security and privacy in biometrics-based authentication systems," IBM Systems Journal, Vol 40. NO 3, 2001.

What is a presentation attack?

Biometric Presentation Attacks

A new understanding of a

• Keyring - impersonating target victims that have the desired authorization

Image Source: c't magazine

Christoph Busch

Security of Biometric Systems

Gummy Finger Production in 2000 !

Attack without support of the target victim

- Recording of a latent fingerprint from flat surface material
 - z.B. glass, CD-cover, etc. with iron powder and tape
- Scanning and post processing:
 - Correction of scanning errors
 - Closing of ridge lines (as needed)
 - Image inversion
- Print on transparent slide
- Photochemical production of a circuit board
- Artefact with silicone, which will have flexibility and humidity

Gummy Finger Production in 2000 !

Reported in a publication by the German Federal Police

• Findings:

"All systems were fooled by fingerprint-stamps, copied from entitled persons and made of india-rubber."

Potential points of attack to fool a biometric system	Group c)
are as toutows: 1. Front of system (sensor) Fooling the sensor (camera, fingerprint-scanner etc.) by using a copied, falsified or forged biometric attribute or by using a biometric attribute similar to the original one.	System No.2 could not be fooled (but has a FRR of 65,41% anyway). System No.3 could be fooled in some cases when simple signatures were imitated. Group d)
 Data link between sensor and data processing unit Monitoring the signal offers two methods of attack: Recording and replaying the signal into the data link (replay-attack) Reworking of the recorded signal (video, audio, printou) and rease for sensor 	System No.10 uses a video-signal to transfer the palm-image to the data processing unit. Therefore the system could be fooled like the audio-visual- systems by a replay attack. Results If the signature-system No.2 (FRR 65,43 %) is not taken into account, 9 of 10 biometric systems could
5. Jones must between data processing unit and other units Hacking into the system will offer the possi- bility of copying or manipulating stored templates of entided biometric attributes. In this study only points 1, and 2, were examined because point 3, was not quoted as a specialized biometry-related track.	ce covere dy mote of rees simple measures. To record and to replay the video-signals a standard video-sape recorder was used. The india-rabbe fingerprint-stange were made of materials which are easily available in handleraft aboys. Conclusion and outlook
Proceeding of safety examination The 11 biometric systems were divided into 4 group: a and/or-virtual-systems (No.1,5,2,5,5) a and/or-virtual-systems (No.2,1) a signature-systems (No.2,1) d) hand geometry system (No.10) (msg.a)	The Biol5 Study clearly showed, that with the exerption of one system (by the way the most expensive one) none of the tested systems is suit- able to be used for safety-related applications. But some of the security-back could easily be remoded by the manufacturers. The tested systems are the standard of one years gas and the develop- ment of biometric systems goes on.
System No.9 was flooled by printouts of templates of entitled protons (colour and black and while) and sus placed brokes the system carenes by the offender to take photographs of entitled persons. Systems No.7 3 are 11 even foold by protoning and employing the video-signal of neutrol persons into systems No.7 3 are and other persons and other and the system carenes and data processing and. The addo-signal (No.7 and 8) was not necessary to synchronic the adua on Video-signary to	Sytems which are less suitable to be used for safety-related applications may still do a good job in other domains. Therefore, as a result of the BioSS Study, we have started a new project to create technical procedures for testing and classifying biometric systems. The aim is to create categories for biometric biometric system to use for what kind of application.
System No.5 (Iris Recognition System) could not	
Group b)	
All systems were fooled by fingerprint-stamps, copied from entitled persons and made of india-	

[Zwiesele2000] A. Zwiesele et al. "BioIS Study - Comparative Study of Biometric Identification Systems", In: 34th Annual 2000 IEEE International Carnahan Conference on Security Technology, Ottawa, (2000)

Presentation Attack Detection

Impostor

- impersonation attack
 - positive access 1:1 (two factor application)
 - positive access 1:N (single factor application)
- finding a look-a-like
- making appearance similar to the reference
- artefact presentation

Image Source: http://upshout.net/game-of-thrones-make-up

For fingerprint recognition: e.g. silicon artefact production

For face recognition: e.g. find a look-a-like first and then consult a make-up-artist

Presentation Attack Detection

Impostor

- impersonation attack
 - positive access 1:1 (two factor application)
 - positive access 1:N (single factor application)
- finding a look-a-like
- making appearance similar to the reference
- artefact presentation

Concealer

- evasion from recognition
 - negative 1:N identification (watchlist application)
- depart from standard pose

evade face detection

Image Source: https://www.youtube.com/watch?v=LRi8whKmN1M

Image Source: https://cvdazzle.com

Image Source: http://upshout.net/game-of-thrones-make-up

Presentation Attack Detection - Framework

The international standard ISO/IEC 30107-1

• freely available in the ISO-Portal

http://standards.iso.org/ittf/PubliclyAvailableStandards/c053227_ISO_IEC_30107-1_2016.zip

	Online Browsing Platform (OBP)
ISO	☆ Search Iso/IEC 30107-1:2016(en) ×

ISO/IEC 30107-1:2016(en) Information technology - Biometric presentation attack detection - Part 1: Framework

Table of contents

Foreword

Introduction

1 Scope

- 2 Normative references
- 3 Terms and definitions
- 4 Symbols and abbreviated terms
- 5 Characterisation of presentation attack 5.1 General
 - 5.2 Presentation attack instruments

= 6 Framework for presentation attack det

6.1 Types of presentation attack deter

1 6.2 The role of challenge-response

Foreword

ISO (the International Organization for Standardization) and IEC (the International Electrotechnical Commission) form the specialized system for worldwide standardization. National bodies that are members of ISO or IEC participate in the development of International Standards through technical committees established by the respective organization to deal with particular fields of technical activity. ISO and IEC technical committees collaborate in fields of mutual interest. Other international organizations, governmental and non-governmental, in liaison with ISO and IEC, also take part in the work. In the field of information technology, ISO and IEC have established a joint technical committee, ISO/IEC JTC 1.

The procedures used to develop this document and those intended for its further maintenance are described in the ISO/IEC Directives, Part 1. In particular the different approval criteria needed for the different types of document should be noted. This document was drafted in accordance with the editorial rules of the ISO/IEC Directives, Part 2 (see www.iso.org/directives).

Christoph Busch

Security of Biometric Systems

Presentation Attack Detection

Definitions in ISO/IEC 30107 PAD - Part 1: Framework

presentation attack

presentation to the biometric capture subsystem with the goal of interfering with the operation of the biometric system

presentation attack detection (PAD)

automated determination of a presentation attack

Definitions in ISO/IEC 2382-37: Vocabulary

http://www.christoph-busch.de/standards.html

impostor

subversive biometric capture subject who attempts to being matched to someone else's biometric reference

identity concealer

subversive biometric capture subject who attempts to avoid being matched to their own biometric reference

Presentation Attack Detection

ISO/IEC 30107-1 - Definitions

 presentation attack instrument (PAI) biometric characteristic or object used in a presentation attack

artefact

artificial object or representation presenting a copy of biometric characteristics or synthetic biometric patterns

Types of presentation attacks

Presentation Attacks against the iPhone

Introduction of iPhone with Touch-ID in September 2013

Video Source: CCC, 2013

BSI Testing (www.bsi.bund.de)

- evaluation with known artefacts
- development of new artefact species
 - BSI-Fake-Toolbox

Source: BSI

Fingerphoto Presentation Attack Detection

Finger recognition study - 2012/2013

- Observation
 - significant strong light reflection near the fingertip
 - from the cameras LED
- Reflection depends on
 - Shape of the finger
 - Consistency of the finger skin
 - Angle of the finger to the camera
- Attack detection, as light reflection differs from artefacts to bona fide fingers

[SBB13] C. Stein, V. Bouatou, C. Busch, "Video-based Fingerphoto Recognition with Anti-spoofing Techniques with Smartphone Cameras", Proceedings 12th Intern. Conference of the Biometrics Special Interest Group (BIOSIG), (2013)

Fingerphoto Presentation Attack Detection

Finger recognition study - 2012/2013

• Results: Presentation Attack Detection (PAD)

CHALLENGE RESPONSE INPUT

WHITE PIXLS (VALUE: 255)

WHITE PIXLS (VALUE: 255)

Conclusion: Fingerphoto capture show better Presentation Attack Detection than capacitive sensors

Christoph Busch

Security of Biometric Systems

17

Countermeasures

- Observation of the live skin properties
- Observation of the sweat glandes
- Sensor:
 - Optical Coherence Tomography (OCT)

OCT

- at BSI-Germany
- Prototype for a high-end fingerprint sensor
- Requirements
 - PA robustness
 - Capture area: 20x20x6 mm
 - up to 3000 dpi
 - touchless scanning

Source: BSI

OCT

- Visualization of sweat glands
 - good scan

Source: C. Sousedik, NTNU, 2016

Comparing outer and inner fingerprint patterns

- Less than 2s (on GTX980)
 - detection of outer and inner layer
 - 2D projection

Internal Fingerprint

Surface Fingerprint

Source: BSI

What about other modalities? Presentation Attacks with Eye Artefacts

PAD for Eye Recognition Security

Eye recognition study - 2015

 Presentation Attack Detection (PAD) videos on iPhone 5 S and Nokia 1020

- Method based on Eulerian Video Magnification (EVM)
 - Normalized Cumulative Phase Information

PAD for Eye Recognition Security

Method based on Eulerian Video Magnification (EVM)

[RRB2015] K. Raja, R. Raghavendra, C. Busch: "Video Presentation Attack Detection in Visible Spectrum Iris Recognition Using Magnified Phase Information", in IEEE Transactions on Information Forensics and Security (TIFS), June, (2015)

Security of Biometric Systems

Definition of PAD metrics in ISO/IEC 30107-3

- Testing the PAD subsystem:
- Attack presentation classification error rate (APCER) proportion of attack presentations using the same PAI species incorrectly classified as bona fide presentations in a specific scenario
- Bona fide presentation classification error rate (BPCER) proportion of bona fide presentations incorrectly classified as attack presentations in a specific scenario

PAD for Eye Recognition Security

Eye recognition study - 2015

- Method based on Eulerian Video Magnification (EVM)
 - Normalized Cumulative
 Phase Information
- Zero Error Rates:
 - APCER = 0 %
 - BPCER = 0 %

[RRB2015] K. Raja, R. Raghavendra, C. Busch: "Video Presentation Attack Detection in Visible Spectrum Iris Recognition Using Magnified Phase Information", in IEEE Transactions on Information Forensics and Security (TIFS), (2015)

Security of Biometric Systems

Widely used at borders is Face Recognition! Presentation Attacks with Face Artefacts

Face Presentation Attacks

Christoph Busch

28

Face Presentation Attack Detection

Hardware based

- Challenge Response
 - challenge the subject instructions and then compare the response to reference model for a bona fide behaviour
 - Instructions to the user to change head pose.
 - Reads user's lips after playing audio tracks of words or numbers.

Blink detection

Face Presentation Attack Detection

Hardware based

- Challenge Response
 - challenge the subject instructions and then compare the response to reference model for a bona fide behaviour

Instructions to the user to change head nose

Face Recognition in unsupervised environments

Smartphone Deployment

The Smartphone as personal device

Smartphones, mobile PCs, tablets and mobile routers with a cellular connection

Source: https://thenextweb.com/insider/2014/11/18/2020-90-worlds-population-aged-6-will-mobile-phone-report/

PAD – based on Depth Information

Light-field camera recently proposed for PAD

panoptic or directional camera

Why light-field camera?

- Multiple focus/depth images in one shot.
- No need to adjust the lens to set focus.
- Portable and hand-held, low cost.

P(θ, φ, λ, **t**, **Vx**, **Vy**, **Vz**)

[Raghu2015] R. Raghavendra, K.B. Raja, and C. Busch: "Presentation Attack Detection for Face Recognition using Light Field Camera", in IEEE Transactions on Image Processing, vol. 24, no. 3, pp. 1060–1075, (2015)

PAD – based on Depth Information

Example of light-field imaging (LYTRO)

[Raghu2015] R. Raghavendra, K.B. Raja, and C. Busch: "Presentation Attack Detection for Face Recognition using Light Field Camera", in IEEE Transactions on Image Processing, vol. 24, no. 3, pp. 1060–1075, (2015)

Christoph Busch

Security of Biometric Systems

3D Face Mask Production

Attack again without support of an enroled individual

- Frontal and profile photos are uploaded
- 3D face dataset rendered and produced

	ts Community A	bout	as seen	on Big Bang Theory!
My Account	My 3D Faces Sub	mit New Photos Account Logout		
Christoph Busch, plea	se provide the following deta	ils:		
				_
	1/ Take Photos	2/ Upload	4/Walt for Results	
	ails			
Person's Det				
Person's Det	Name:	Christoph Busch		
Person's Det	Name: Age:	Christoph Busch		
Person's Det	Name: Age: Gender:	Christoph Busch 50 Male T		
Person's Det	Name: Age: Gender: Ethnic origin:	Christoph Busch 50 Male <u>v</u> European <u>v</u>		
Person's Det	Name: Age: Gender: Ethnic origin: Facial Hair:	Christoph Busch 50 Male T S European T Preserve (default) T		
Person's Det	Name: Age: Gender: Ethnic origin: Facial Hair:	Christoph Busch 50 Male T S European T Preserve (default) T	35	

Christoph Busch

Security of Biometric Systems

3D Face Mask Production

Zoom - Fine Tuning

Reference Guide

Point Description: Right cheekbone. The outer cheekbone points should be inside of any sideburn hair and above the nose points.

3D-reconstruction

mask production preview ("beautified"):

3D Face Mask Production

Attack again without support of an enroled individual

• A static mask is produced and shipped

Christoph Busch

Face Capture Device Security

Impostor Presentation Attack

3D silicone mask

- Targeted attack with 3D silicon custom mask
- Cost more than 3000 USD

Face Capture Device Security

Face disguise for organized crime (June 2012)

• http://www.dailymail.co.uk/news/article-2153346/Black-armed-robber-disguised-white-man-using-latex-mask.html

The man in the latex mask: BLACK serial armed robber disguised himself as a WHITE man to rob betting shops

- Henley Stephenson wore the disguise during a 12-year campaign of holdups at betting shops and other stores across London
- · He was part of a three-man gang jailed for a total of 28 years
- CCTV footage showed him firing a semi-automatic pistol into the ceiling during a raid on a betting shop
- The mask was bought from the same London shop which supplied masks used in the £40m Graff Diamonds heist

By ROB PREECE and REBECCA CAMBER FOR THE DAILY MAIL

PUBLISHED: 17:22 GMT, 1 June 2012 | UPDATED: 16:21 GMT, 2 June 2012

Most masked robbers opt for a balaclava to hide their identity.

Not this one. Henley Stephenson, 41, eluded police for more than ten years thanks to an extraordinarily lifelike latex mask, which turned him into a white skinhead.

Officers discovered that their man was in fact black when they finally caught up with Stephenson after a string of armed raids dating back to 1999.

Christoph Busch

Security of Biometric Systems

More on Standardized Metrics

ISO/IEC 30107-3

• available in the ISO/IEC Portal

https://www.iso.org/obp/ui/#iso:std:iso-iec:30107:-3:ed-1:v1:en

Online Browsi	ng Platform (OBP)	Ä	Sign in	Language	► Help	Searc
ISO A Search	a ISO/IEC 30107-3:2017(en) 🗙					
ISO/IEC 30107-3:2017((en) Information technology – Biometric pr detection – Part 3: Testing and reporti	esentation attack ng	6	Buy 🚺] Follow	i
Table of contents	(9			
Foreword Introduction 1 Scope 2 Normative references 3 Terms and definitions 3.1 Attack elements 3.2 Metrics 4 Abbreviated terms 5 Conformance 6 Presentation attack detection c 7 Levels of evaluation of PAD me 7.1 Overview 7.2 General principles of evalu 7.3 PAD subsystem evaluation Tables ✓ Equations	 3 Terms and definitions For the purposes of this document, the terms and following apply. ISO and IEC maintain terminological databases for IEC Electropedia: available at http://www.el ISO Online browsing platform: available at http://www.el 	definitions given in IS r use in standardization ectropedia.org/ http://www.iso.org/obj em with the goal of in	O/IEC 238 on at the fo 2 terfering w	2-37 and ISO/IE blowing addresse	C 30107-1 a es: of the biome	nd the

Security of Biometric Systems

Definition of full system vulnerability metric w.r.t attacks

Impostor attack presentation match rate (IAPMR)
 <in a full-system evaluation of a verification system> the proportion of impostor attack presentation using the same PAI species in which the target reference is matched

• Concealer attack presentation non-match rate (CAPNMR) in a full-system evaluation of a verification system, the proportion of concealer attack presentation using the same PAI species in which the target reference is not matched.

Source: ISO/IEC 30107-3

Definition of detection capabilities metrics

- Testing the PAD subsystem with security measure:
- Attack presentation classification error rate (APCER) proportion of attack presentations using the same PAI species incorrectly classified as bona fide presentations in a specific scenario

$$APCER_{PAIS} = 1 - \left(\frac{1}{N_{PAIS}}\right) \sum_{i=1}^{N_{PAIS}} Res_i$$

Source: ISO/IEC 30107-3

- N_{PAIS} is the number of attack presentations for the given PAI species
- Res_i takes value 1 if the ith presentation is classified as an attack presentation, and value 0 if classified as a bona fide presentation

Definition of detection capabilities metrics

- Testing the PAD subsystem with security measure:
- Attack presentation classification error rate (APCER) the highest APCER (i.e. that of the most successful PAI species) should be reported as follows:

$$APCER_{AP} = \max_{PAIS \in \mathcal{A}_{AP}} (APCER_{PAIS})$$

Source: ISO/IEC 30107-3

where A_{AP} is a subset of PAI species with attack potential at or below AP.

Definition of detection capabilities metrics

- Testing the PAD subsystem with convenience measure:
- Bona fide presentation classification error rate (BPCER) BPCER shall be calculated as follows:

$$BPCER = \frac{\sum_{i=1}^{N_{BF}} RES_i}{N_{BF}}$$

Source: ISO/IEC 30107-3

- *N*_{BF} is the number of bona fide presentations
- Res_i takes value 1 if the it^h presentation is classified as an attack presentation, and value 0 if classified as a bona fide presentation

Definition of detection capabilities metrics

- DET curve analyzing operating points for various security measures and convenience measures
- Example:

Source: IR. Raghavendra, K. Raja, S. Venkatesh, C. Busch: "Transferable Deep-CNN features for detecting digital and print-scanned morphed face images", in Proceedings of 30th International Conference on Computer Vision and Pattern Recognition Workshop (CVPRW 2017), Honolulu, Hawaii, July 21-26, (2017)

Christoph Busch

Definition of detection capabilities metrics

• Testing a specific security level:

PAD mechanism may be reported in a single figure

• BPCER at a fixed APCER:

One may report BPCER when APCER_{AP} is 5% as BPCER20

Source: ISO/IEC 30107-3

References

Standards

- ISO/IEC Standards http://www.iso.org/iso/iso_catalogue/catalogue_tc/catalogue_tc_browse.htm? commid=313770&published=on
- ISO/IEC 30107-1, "Biometric presentation attack detection -Part 1: Framework", 2016 http://standards.iso.org/ittf/PubliclyAvailableStandards/ c053227_ISO_IEC_30107-1_2016.zip
- ISO/IEC 30107-3, "Biometric presentation attack detection -Part 3: Framework", 2017 http://www.iso.org/iso/home/store/catalogue_tc/catalogue_detail.htm?csnumber=67381
- ISO/IEC 2nd CD 19989-1, "Criteria and methodology for security evaluation of biometric systems - Part 1: Framework" https://www.iso.org/standard/72402.html
- ISO/IEC 1st CD 19989-3, "Criteria and methodology for security evaluation of biometric systems - Part 3: Presentation attack detection

https://www.iso.org/standard/73721.html

Contact

If you have a student interested in an internship

• then please contact:

Contact

or if you prefer to travel to the Norwegian snow:

Prof. Dr. Christoph Busch

Norwegian University of Science and Technology Department of Information Security and Communication Technology Teknologiveien 22 2802 Gjøvik, Norway Email: christoph.busch@ntnu.no Phone: +47-611-35-194