Biometrics and Interconnectivity

Christoph Busch

European Association for Biometrics (EAB)

https://eab.org/

copy of slides available at:

https://christoph-busch.de/about-talks-slides.html

2021-10-01

Why Biometrics? - Confirm an Identity Claim

Authentication can be achieved by:

Something you know:
 Password, social profile

Something you own:
 Smartphone, breeder document

Something you are:
 Body characteristics

Something you know or own you may loose, forget or forward to someone else, with biometrics this is more difficult.

European Association for Biometrics (EAB)

Objectives of the EAB

- The EAB is a non-profit, nonpartisan association https://eab.org/
- EAB supports all sections of the ID community across Europe, including governments, NGO's, industry, associations and special interest groups and academia.

- Our role is to promote the responsible use and adoption of modern digital identity systems that enhance people's lives and drive economic growth.
- Structure of membership fees is inclusive
 - Free membership for Bachelor, Master and PhD students! https://eab.org/membership/types_of_membership.html

European Association for Biometrics (EAB)

More Information

- Our initiatives are designed to foster networking
 - Annual conference: EAB-RPC https://eab.org/events/program/219
 - Biometric Training Event https://eab.org/events/program/224
 - Workshops on relevant topics (e.g. Presentation Attack Detection, Morphing Attack Detection, Sample Quality, Bias in Biometric Systems)

https://eab.org/events/

- Online Seminar every second week https://eab.org/events/program/268
- Recorded keynote talks https://eab.org/events/lectures.html
- Monthly newsletter https://eab.org/news/newsletter.html
- ► Annual academic graduation report

 https://eab.org/upload/documents/1961/EAB-research-report-2020.pdf
- Open source repository https://eab.org/information/software.html

Facilitating Free Travel in the Schengen Area

Authors of EAB position paper

- appreciate the benefit of the Schengen area and the free movement of citizens in the EU
- hope that reintroduced intra-Schengen physical border controls and even closed borders will disappear
- seek technology, which is compliant with ethical principals and fundamental rights
- support demographic fairness for AI and non-AI-based systems
- anticipate that we discuss technology and steps,
 which will NOT require a change of the legal framework

Perspective

fully functioning and resilient Schengen area

The full EAB position paper is available at:

https://eab.org/files/documents/2021-05-06_EABposition_Facilitating_Free_Travel_in_the_Schengen_Area.pdf

Focus of this talk: biometrics and EXTERNAL borders

External Borders

Situation of existing technology

- modern technologies at the border (Eurodac, VIS, EES) provide promising solutions facilitating legitimate travels
 - automated border gates
 with biometric verification
- biometric
 reference data must be
 accessible in personal ID

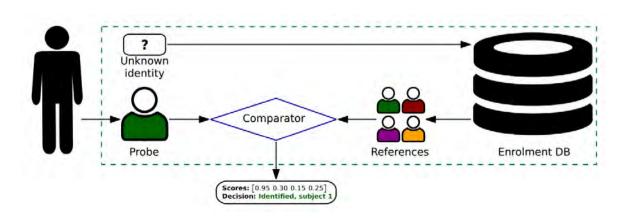
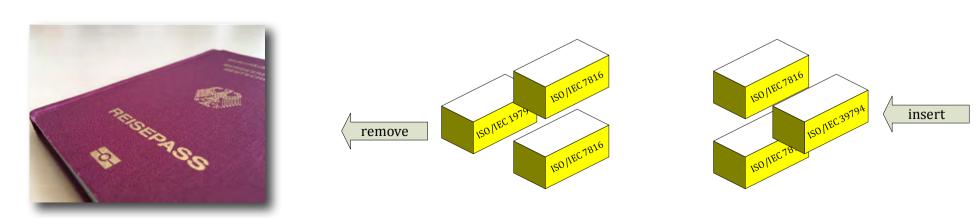


Image source: secunet, idemia, vision-box

accessible in personal ID document or a central database



External Borders

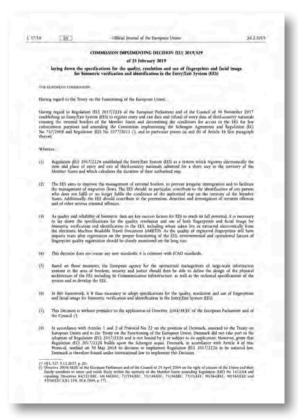
Situation of near-term change in technology (3 years)

- modern technologies at the border (Eurodac, VIS, EES) provide promising solutions facilitating legitimate travels
 - automated border gates
 with biometric verification
- biometric reference data must comply with ISO/IEC 39794-1, -4 and -5 accessible in personal ID document by revision of ICAO 9303
 - passport reader equipment must be adopted by 2025-01-01

External Borders

Situation of mid-term change in technology (6 years)

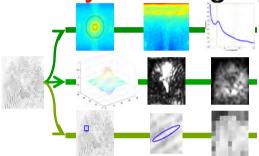
- modern technologies at the border (Eurodac, VIS, EES) provide promising solutions facilitating legitimate travels
 - automated border gates with biometric verification
- biometric
 reference data must be
 accessible in personal ID document



Corona Consequences Focus on contactless biometric captures

Quality Metrics for Fingerprint Images

NFIQ2.0


- The Entry Exit System implementing decision 2019/329 defines the mandatory use:
- "At the moment of enrolment, the version 2.0 (or newer version) of the Fingerprint Image Quality (NFIQ) metric shall be used for verifying that the quality of the captured fingerprint data respects the thresholds ..."

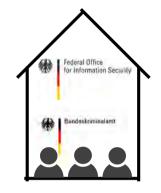
Quality Metrics for Fingerprint Images

The NFIQ2.0 approach

 Measure quality by filtering the signal and determine the utility of a fingerprint sample.

 Providing constructive feedback only possible if cause of poor quality is known.

 NFIQ2.0 constitutes the content of ISO/IEC 29794-4 https://www.iso.org/standard/62791.html


Quality Metrics for Fingerprint Images

How was NFIQ2.0 developed?

• 2010 - 2021

Maintenance

Testing

Development

Standardisation

- Status 2021
 - ▶ NFIQ2.1 in GitHub: https://github.com/usnistgov/NFIQ2

- ▶ ISO/IEC 29794-4: https://www.iso.org/standard/62791.html
- ▶ NFIQ IR 8382 published: https://nvlpubs.nist.gov/nistpubs/ir/2021/NIST.IR.8382.pdf 🕜
- NFIQ2.1 is for fingerprint samples from optical capture devices not for contactless!

Fingerprint Quality in Covid-19 Times

EES will need NFIQ2.1 for contactless capture devices

- Covid-19 will follow us for some more time
- contactless devices will be demanded (rather soon)
- a joint workshop on NFIQ2.1 discussed recently re-training / calibration for contactless capture devices
 - you can find presentations from the recent NFIQ 2.1 workshop at: https://eab.org/events/program/248
- a recent overview of contactless fingerprint recognition [Priesnitz2021] J. Priesnitz: ""An Overview of Touchless 2D Fingerprint Recognition", in EURASIP JIVP, (2021)

https://jivp-eurasipjournals.springeropen.com/articles/10.1186/s13640-021-00548-4

eab

Image Source: https://www.semanticscholar.org/paper/Contactless-3D-Fingerprint-Identification-Kumar

Presentation Attack Detection

Presentation Attack Detection

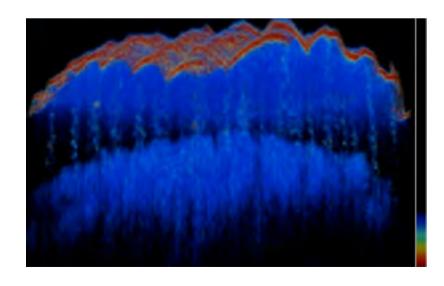
Impostor

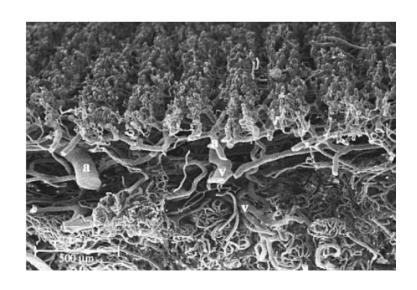
- impersonation attack
 - positive access 1:1 (two factor application)
 - positive access 1:N (single factor application)
- finding a look-a-like
- making appearance similar to the reference
- artefact presentation

Concealer

- evasion from recognition
 - negative 1:N identification (watchlist application)
- depart from standard pose

evade face detection

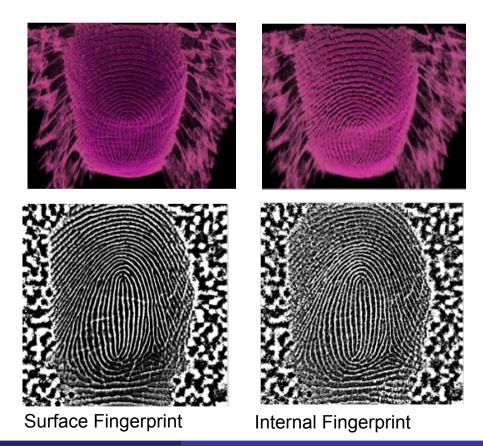



Image Source: https://www.youtube.com/watch?v=LRj8whKmN1M
Image Source: https://cvdazzle.com

Fingerprint Capture Device Security

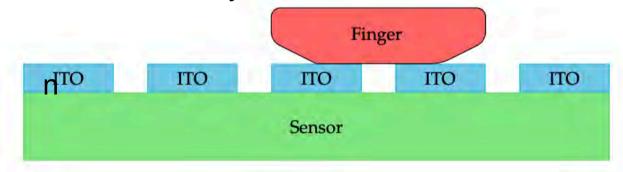
Countermeasures

- Observation of the live skin properties
 - Dermal-epidermal junction zone (inner fingerprint)
 - Observation of the sweat glandes and sweat ducts
- Sensors
 - Optical Coherence Tomography (OCT)



Fingerprint Capture Device Security

Comparing outer and inner fingerprint patterns


- Detection of surface and internal layer
- 2D projection

Fingerprint Capture Device Security

Impedance based detection

- thin film transistor (TFT) technology
 - indium-tin-oxide (ITO) coating
- a finger connecting two conductors
 - the conductivity of human skin differs from artefacts

 Nine different frequencies in the range from 1 to 500 kHz are used for the impedance measurements.

	FQ_1	FQ_2	FQ_3	FQ_4	FQ_5	FQ_6	FQ_7	FQ_8	FQ_9
(Hz)	1000	2500	5000	10,000	25,000	50,000	100,000	250,000	500,000

[Kolberg2021] J. Kolberg, et al.: "On the Effectiveness of Impedance-based Fingerprint Presentation Attack Detection", in Sensors Journal, (2021)

https://www.mdpi.com/1424-8220/21/17/5686

Impostor Presentation Attack

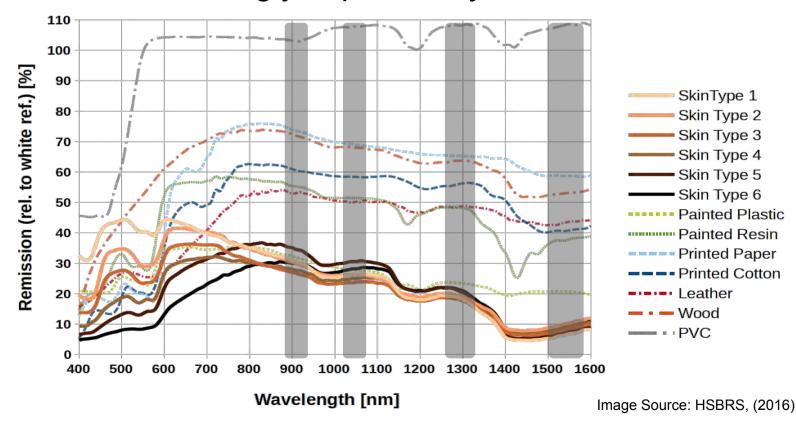
3D silicone mask

http://edition.cnn.com/2010/WORLD/americas/11/04/canada.disguised.passenger

Face Capture Device - Skin Detection

Short Wave Infrared Range (SWIR) imaging

- With multiple point sensors proposed by Steiner et al.
- Skin types defined by Fitzpatrick [Fitzpatrick1988]
 - I Always burn, never tan
 - ▶ II Usually burn, tan less than average
 - III Sometimes mild burn, tan about average
 - IV Rarely burn, tan more than average
 - V brown
 - VI black

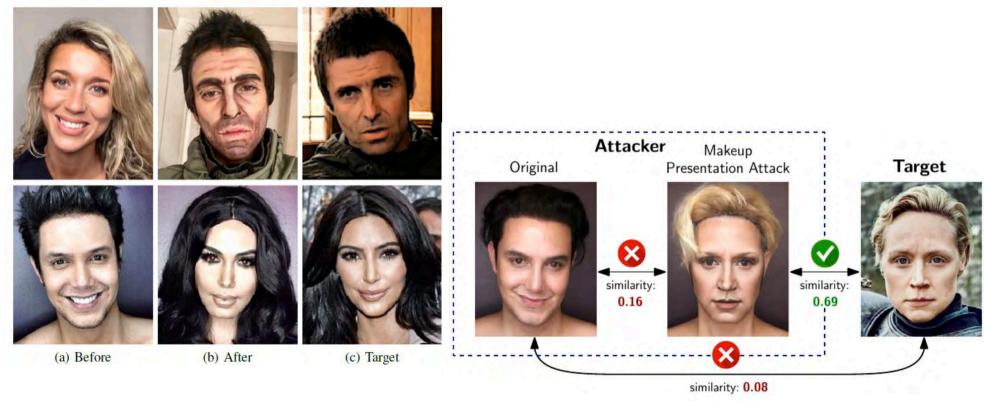

Image Source: HSBRS, (2016)

[Fitzpatrick1988] T. Fitzpatrick: "The validity and practicality of sun-reactive skintypes I through VI", Archives of Dermatology, (1988)

Face Capture Device - Skin Detection

Short Wave Infrared Range (SWIR) imaging

- Extraction of spectral remission properties
- Remission spectrum above 1200 nm independent by melanin, but strongly impacted by water



[Jacquez1955] J. Jacquez: "Spectral reflectance of human skin in the region 0.7-2.6m",J. of Applied Physiology, (1955)

Face - Makeup Presentation Attacks

Severe alterations

- Makeup for impersonation
- Liveness detection is not sufficient
- Detection difficult since bona fide users may also apply

[RDB2020] C. Rathgeb, P. Drozdowski, C. Busch: "Detection of Makeup Presentation Attacks based on Deep Face Representations", in Proceedings of 25th International Conference on Pattern Recognition (ICPR), (2020)

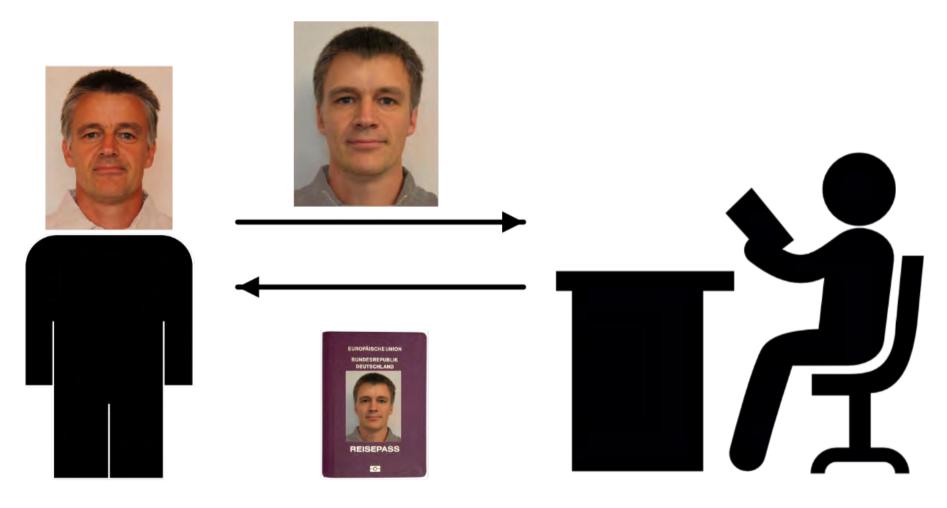
Morphing Attack Detection

What is Morphing?

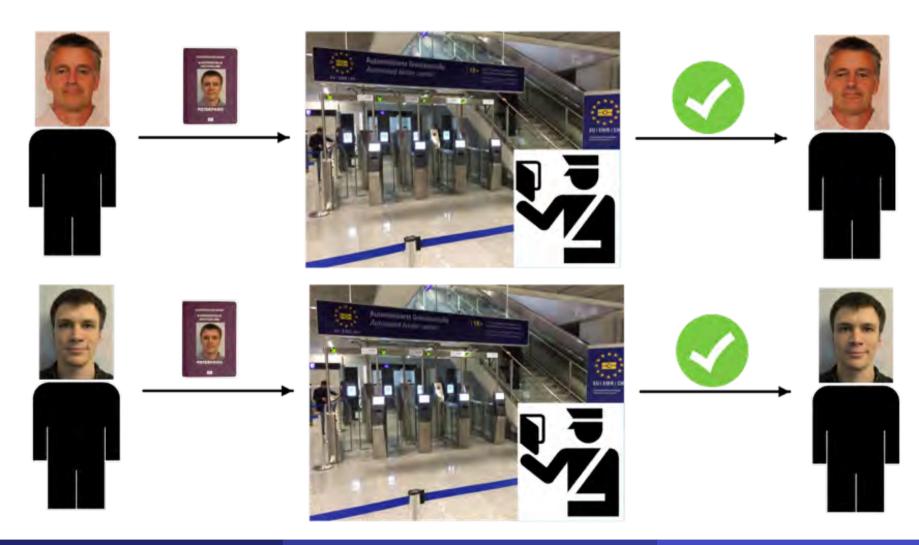
In our real world morphing can become a threat

- with a criminal and an accomplice as actors
- take the criminal
- and the accomplice (or any other good EU citizen)
- morphing can transform one face image into the other

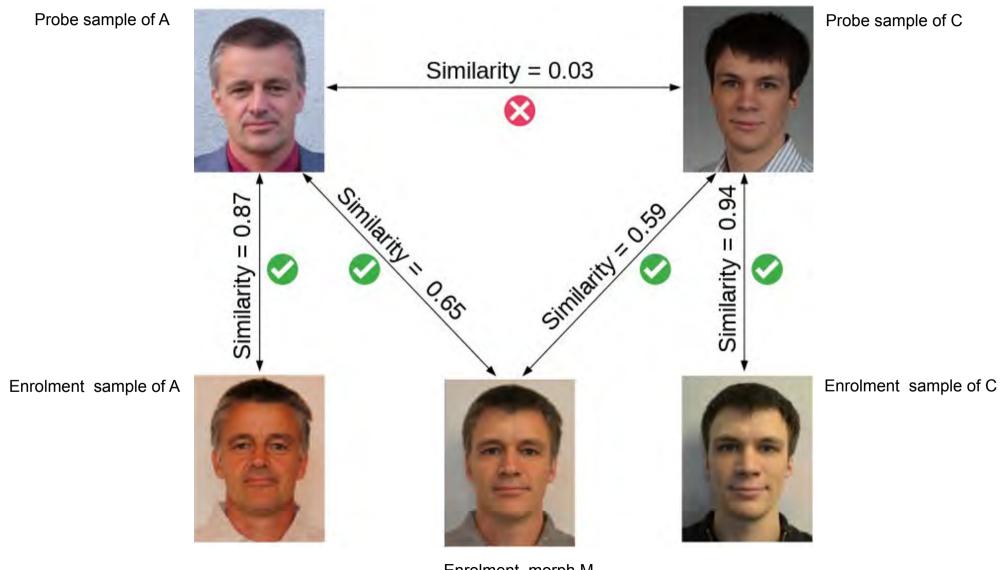
What is Morphing?


In our real world morphing can become a threat

- with a criminal and an accomplice as actors
- take the criminal
- and the accomplice
- morphing can transform one face image into the other
- and you can stop half way in the transformation


Morphing attack scenario

Passport application of the accomplice A



Morphing attack scenario

Border control

Verification against morphed facial images

Enrolment morph M

Is it a really problem?

Is it a really problem? - YES!

- In September 2018 German activists
 - used a morphed images of Federica Mogherini
 (High representative of the European Union for Foreign Affairs and Security Policy) and a member of their group
 - and received an authentic German passport.

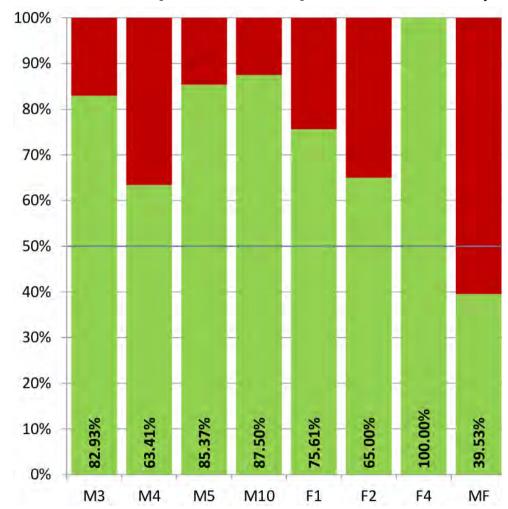
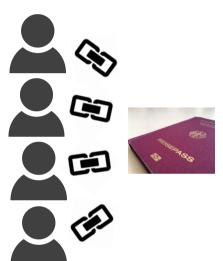


Image source: https://www.spiegel.de/netzwelt/netzpolitik/biometrie-im-reisepass-peng-kollektiv-schmuggelt-fotomontage-in-ausweis-a-1229418.html

Scale of the Problem: Vulnerability

Human Experts Capabilities - (44 border guards)

[FFM2016] M. Ferrara, A. Franco, D. Maltoni: "On the Effects of Image Alterations on Face Recognition Accuracy", in Face Recognition Across the Imaging Spectrum, Springer Nature, (2016)


Morphing Attack - Impact

Countermeasures

- The current procedure, where a printed face photo can be provided by the citizen, poses serious security risks
 - ID-document based on printed photos are no longer providing a unique link

Solutions

 Photo studio should digitally sign the picture and send it to the passport application office (this is in progress for Finland)

- Switch to live enrolment (that is the case for Norway and Sweden)
- Software-supported detection of morphed face images at enrolment and at ID-document control

image source: https://pixabay.com/de/vectors/tick-sternchen-kreuz-rot-gr%C3%BCn-40678/

MAD Evaluation

Christoph Busch Biometric Attack Detection 2021 3

NIST-FRVT-MORPH

NIST IR 8292 report presented September, 2021

FRVT-MORPH

https://pages.nist.gov/frvt/html/frvt_morph.html

- results for MAD algorithms from four research labs:
 - Hochschule Darmstadt (HDA)
 - Norwegian University of Science and Technology (NTNU)
 - University of Bologna (UBO)
 - University of Twente (UTW)

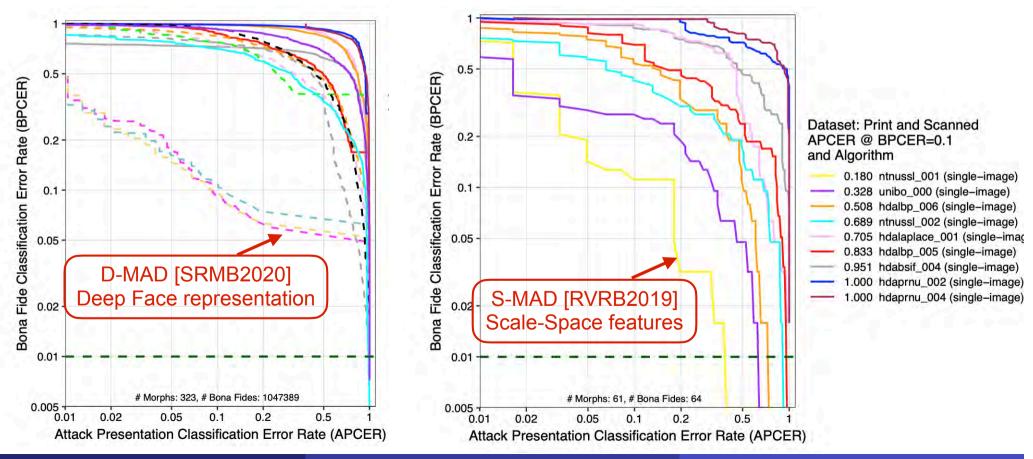
NISTIR 8292 DRAFT SUPPLEMENT

Face Recognition Vendor Test (FRVT)

Part 4: MORPH - Performance of Automated Face Morph
Detection

Mei Ngan Patrick Grother Kayee Hanaoka Jason Kuo Information Access Division Information Technology Laboratory

This publication is available free of charge from: https://www.nist.gov/programs-projects/face-recognition-vendor-test-frvt-ongoing



Christoph Busch Biometric Attack Detection 2021 3

NIST-FRVT-MORPH

NIST IR 8292 report presented April, 2021

- Performance of Automated Face Morph Detection https://pages.nist.gov/frvt/reports/morph/frvt_morph_report.pdf
- results for high quality morphs versus print and scanned
 - note the low number of print and scanned images

More information

The MAD website

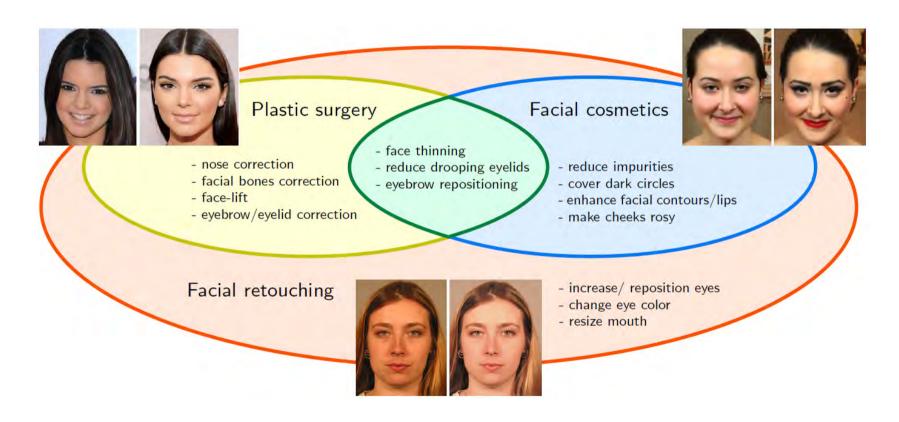
https://www.christoph-busch.de/projects-mad.html

The MAD survey papers

• U. Scherhag, C. Rathgeb, J. Merkle, R. Breithaupt, C. Busch: "Face Recognition Systems under Morphing Attacks: A Survey", in IEEE Access, (2019)

https://ieeexplore.ieee.org/document/8642312

• S. Venkatesh, R. Raghavendra, K. Raja, C. Busch: "Face Morphing Attack Generation & Detection: A Comprehensive Survey", in IEEE Transactions on Technology and Society (TTS), (2021) https://ieeexplore.ieee.org/document/9380153


Face Morphing Attack Generation & Detection A Comprehensive Survey

Non-Intentional Attacks - Beautification

Beautification of Facial Images

Scenario

either the reference or the probe image has been altered

[Rathgeb2019] C. Rathgeb, A. Dantcheva, C. Busch: "Impact and Detection of Facial Beautification in Face Recognition: An Overview", in IEEE Access, 7(1), (2019) https://ieeexplore.ieee.org/document/8877744


Beautification of Facial Images

Retouching

- users may apply retouching with easy-to-use apps
- common alterations:
 - smoothing skin
 - slimming nose
 - enlarging eyes

Beautification of Facial Images

Retouching detection

detection of retouching in differential scenario

(similar to MAD)

- potential features
 - texture descriptors
 - facial landmarks
 - deep features
- results reported as D-EER
 - ▶ ~1.5% for known and
 - ~10% for unknown retouching algorithms
 - 6 apps
 - 9000 retouched facial images

Feature Classification Probe image Reference Difference Texture descriptor Difference vector Facial landmarks Facial landmarks Difference potentially trusted retouched Deep features Deep features Support vector machines Weighted Bona fide Retouched score-level (accept) (reject) fusion

[Rathgeb2020] C. Rathgeb, C. Satnoianu, N. Haryanto, K.Bernardo, C. Busch: "Differential Detection of Facial Retouching: A Multi-Biometric Approach", in IEEE Access, (2020)

Further Challenges

Quality Metrics for Facial Images

Standard ISO/IEC 29794-5 to be aligned with both

- ISO/IEC 19794-5:2011
- ISO/IEC 39794-5:2019

Definitions

- 6.2 Unified quality score FaceQnet (JRC)
- 6.3 Capture-related quality elements
- 6.4. Subject-related quality elements

a) Compliant image b) Low contrast source: ISO/IEC 39794-5:2019, Annex D https://www.iso.org/standard/72156.html

images with +8 degrees (left) and -8 degrees (right) rotation in roll
Image Source: ISO/IEC 19794-5:2011

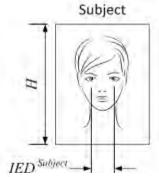


Image Source: ISO/IEC 39794-5

Quality Metrics for Facial Images

ISO/IEC 3rd WD 29794-5 to be aligned with both

- ISO/IEC 19794-5:2011
- ISO/IEC 39794-5:2019

#	Image quality aspect	Collection of reference samples for ID credentials	Collection of probe for instantaneous verification	Enrolment for other enrolment, delayed verification, probe later used as enrolment
1	Unified quality score	6.2	6.2	6.2
2	Illumination uniformity	6.3	6.3 optional	6.3 optional
3	Illumination mean	6.3.3.2	6.3.3.2 optional	6.3.3.2 optional
4	Illumination variance	6.3.3.3	6.3.3.3 optional	6.3.3.3 optional
5	Illumination skewness	6.3.3.4	6.3.3.4 optional	6.3.3.4 optional
6	Illumination kurtsosis	6.3.3.5	6.3.3.5 optional	6.3.3.5 optional
7	Illumination under-exposure	6.3.3	6.3.3 optional	6.3.3 optional
8	Illumination over-exposure	6.3.5	6.3.5 optional	6.3.5 optional
9	Dynamic Range	6.3.6	6.3,6 optional	6.3.6 optional
10	De-focus	6.3.7	6.3.7 optional	6.3.7 optional
11	Image sharpness	6.3.8	6.3.8 optional	6.3.8 optional
12	Motion blur	6,3,9	6.3.9 optional	6.3.9 optional
13	Edge Density	6.3.10	6.3,10 optional	6.3.10 optional
14	Compression	6.3.11	15.7	TALL STATE
15	Unnatural colour and colour balance	6.3.12	6.3.12 optional	6.3.12 optional
16	Eyes visible	6.4	6.4 optional	6.4
17	Number of faces present		mandatory	Even more mandatory
18	Inter-eye distance	6.4.3	6.4.3	6.4.3
19	Horizontal position of the face	6.4.4	6.4.4	6.4.4
20	Vertical position of the face	6.4.5	6.4.5	6.4.5
21	Background uniformity	6.4.6	Land I	
22	Pose	6.4.7	6.4.7 optional	6.4.7
23	Expression neutrality	6.4.8	6.4.8 optional	6.4.8 optional
24	Mouth closed	6.4.9	6.4.9 optional	6.4.9
25	Eyes open	6.4.10	6.4.10 optional	6.4.10 optional
26	Developer-defined quality score computation	B and Annex A	8 and Annex A	8 and Annex A

source: ISO/IEC 3rdWD 29794-5, Table 2 https://www.iso.org/standard/81005.html

a) Compliant image b) Low contrast source: ISO/IEC 39794-5:2019, Annex D https://www.iso.org/standard/72156.html

images with +8 degrees (left) and -8 degrees (right) rotation in roll
Image Source: ISO/IEC 19794-5:2011

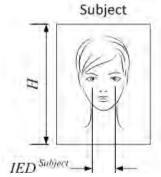


Image Source: ISO/IEC 39794-5

Quality Metrics for Facial Images

How to develop face quality metrics? - Standardisation

• 2021 - 2024

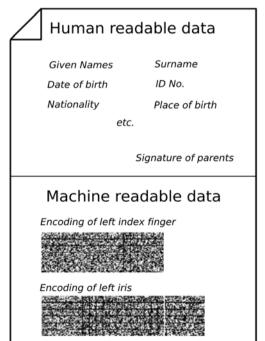
Patrick Grother Mei Ngan

Christoph Busch Patrick Grother

- NIST FRVT Quality Assessment https://pages.nist.gov/frvt/html/frvt_quality.html
- workshop on face quality assessment https://eab.org/events/program/261

Save the date: November 16th to18th

 Join the SC37 WG3 work! https://www.iso.org/members.html

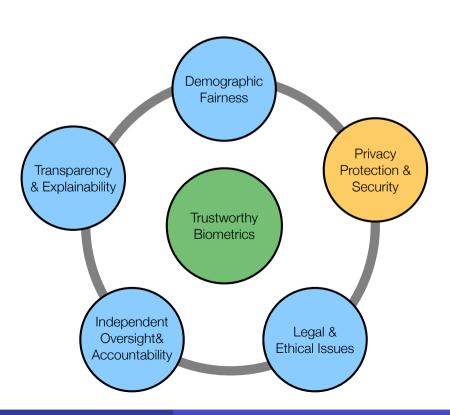

External Borders - Need

Standardised birth certificates (long term benefit)

- definition of an ISO/IEC standard for birth certificates
 - and the registration of such certificates by a global institution (i.e., United Nations)
 - biometric link to a persistent biometric characteristic which does not change over the live time of a human



Image source: FIDELITY, FVC04, CASIAv3


Trustworthy Biometrics

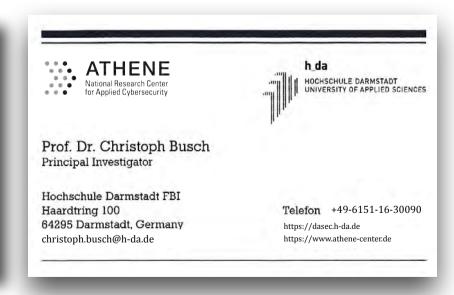
Acceptance of technology

technology itself often considered as threat

Increase trust in technology can be achieved by

- security and privacy by design
- public consultations and information campaigns
- and other factors ...

Contact



Prof. Dr. Christoph Busch

Norwegian University of Science and Technology Department of Information Security and Communication Technology Teknologiveien 22 2802 Gjøvik, Norway

Email: christoph.busch@ntnu.no

Phone: +47-611-35-194

