Face Morphing Attack Detection Methods

Ulrich Scherhag, Christian Rathgeb, Christoph Busch

copy of slides available at: https://christoph-busch.de/about-talks-slides.html more information at: https://christoph-busch.de/projects-mad.html latest news at: https://twitter.com/busch_christoph

EAB workshop July 13, 2022

Overview

Agenda

- Introduction Problem description
- Morphing Attack Detection Scenarios and Methods
- Status: Face Morphing Attack Detection
- Conclusion

ICAO 9303 Logical Data Structure

Data stored on the chip (LDS)

- DG1: Information printed on the data page
- DG2: Facial image of the holder (mandatory)
- DG3: Fingerprint image of left and right index finger
- DG4: Iris image

. . . .

- DG15: Active Authentication Public Key Info
- DG16: Persons to notify Document Security Object
- Hash values of DGs

				D	ocumer	nt Type
REQUIRED		Detail(s) Recorded in MRZ	-	Document Type Issuing State or organization		
	A		DG1	Name (of Holder)		
	ISSUING STATE OR ORGANIZATION DATA			Document Number		
				Check Digit - Doc Number		
				Nationality		
				Date of Birth		
				Check Digit - DOB		
				Sex		
				Data of Expiry or Valid Until Date		
				Check Digit DOE/VUD		
				Optional Data		
				Check Digit - Optional Data Field		
				Composite Check Digit		
		Encoded Identification Feature(s)	Globa	al Interchange Feature	DG2	Encoded Face
	ISSUING STATE OR ORGANIZATION DATA		Additional Feature(s)		DG3	Encoded Finger(s
OPTIONAL					DG4	Encoded Eye(s)
		Displayed Identification Feature(s)	DG5	Displayed Portrait		
			DG6	Reserved for Future Use		
			DG7	Displayed Signature or Usual Mark		
		Encoded Security Feature(s)	DG8	Data Feature(s)		
			DG9	Structure Feature(s)		
			DG10	Substance Feature(s)		
			DG11	Additional Personal Detail(s)		rsonal Detail(s)
	NGS		DG12	Additional Document Detail(s)		ument Detail(s)
	SUIN		DG13	Optional Detail(s)		etail(s)
	S	DG		Security Options		
			DG15	Active Authentication Public Key In		n Public Key Info
			DG16	Person(s) to Notify		

Source: ICAO 9303 Part 10, 2015

DATA ELEMENTS

Is the Principle valid on the left Side?

Principle of unique link of ICAO

• One individual - one passport

- We don't want this principle of unique link to be broken
- Multiple individuals one passport

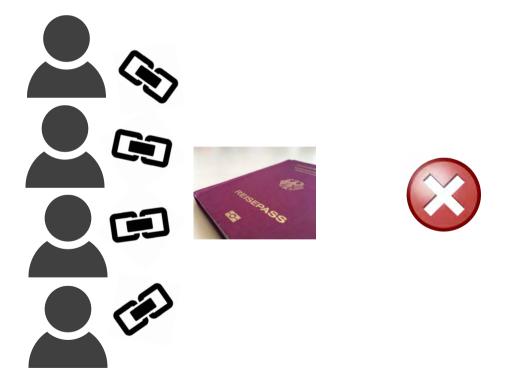


image source: https://pixabay.com/de/vectors/tick-sternchen-kreuz-rot-gr%C3%BCn-40678/

What is Morphing?

What is Morphing?

In our real world morphing can become a threat

- with a criminal and an accomplice as actors
- take the criminal
- and the accomplice (or any other good EU citizen)
- morphing can transform one face image into the other

Christoph Busch

What is Morphing?

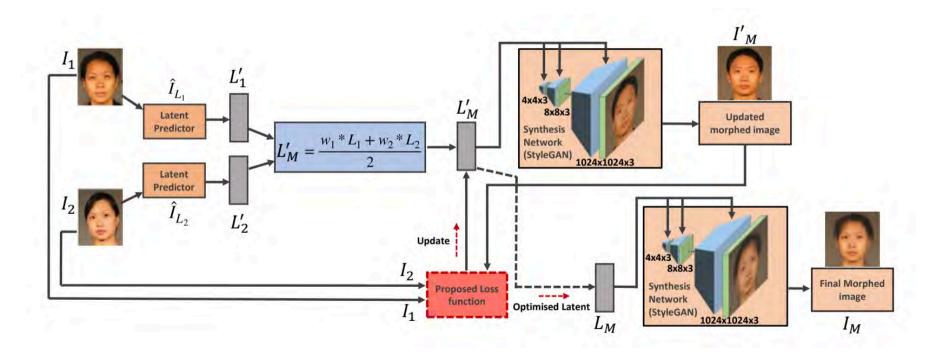
In our real world morphing can become a threat

- with a criminal and an accomplice as actors
- take the criminal
- and the accomplice
- morphing can transform one face image into the other
- and you can stop half way in the transformation

Morphing Attack Detection

A good Morph ...

... is not as simple as you think


• Inaccurate landmarks, insufficient landmarks, fine details

A good Morph ...

... generated with MIP-GAN

- Morphing through Identity Prior driven Generative Adversarial Network
 - high quality morphs
 - enforced identity priors

[Zhang2021] H. Zhang, S. Venkatesh, R. Raghavendra, K. Raja, N. Damer, C. Busch: "MIPGAN - Generating Strong and High Quality Morphing Attacks Using Identity Prior Driven GAN", in IEEE Transactions on Biometrics, Behavior, and Identity Science (TBIOM), (2021)

Morphing Attack Detection

Problem Description

Problem: Morphing Attacks

Is it a really problem ? - YES!

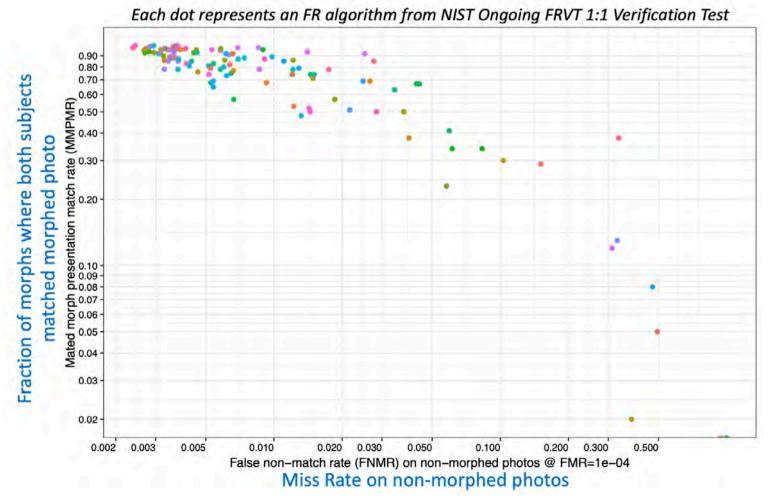
- In September 2018 German activists
 - used a morphed images of Federica Mogherini (High representative of the European Union for Foreign Affairs and Security Policy) and a member of their group
 - and received an authentic German passport.

Image source: https://www.spiegel.de/netzwelt/netzpolitik/biometrie-im-reisepass-peng-kollektiv-schmuggelt-fotomontage-in-ausweis-a-1229418.html

Problem: Morphing Attacks

Is it a really problem ? - YES!

Report by the Slovenian Police [Tork2021]


- Reported in September 2021 that in last 12 month more than 40 morphing cases
 - were detected at Airport Police in Ljubljana
- Business model:
 - Albanian citizens, applying for a Slovenian passport
 - offered as a professional service travel route via Vienna and Warsaw to Canada

[Tork2021] M. Torkar: "Morphing Cases in Slovenia", German Biometric Working Group, (2021), https://eab.org/events/program/220

Scale of the Problem: Vulnerability

NIST report on FRS vulnerability [Ngan2021]

Accurate FRS are more vulnerable!

[Ngan2021] M. Ngan: "FRVT MORPH: Face Morphing Detection Evaluation", NBLAW, (2021) https://eab.org/events/program/229

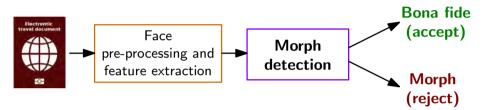
Christoph Busch

Morphing Attack Detection

Scale of the Problem: Vulnerability

The morphing attack paradox

- The better the face recognition system (FRS)
 - the lower the false non-match rate (FNMR)
 - the more tolerant is the FRS at the defined FMR (e.g. 0.01 %)
- The more tolerance the FRS has
 - the more vulnerability we can observe
- Accurate FRS are more vulnerable!

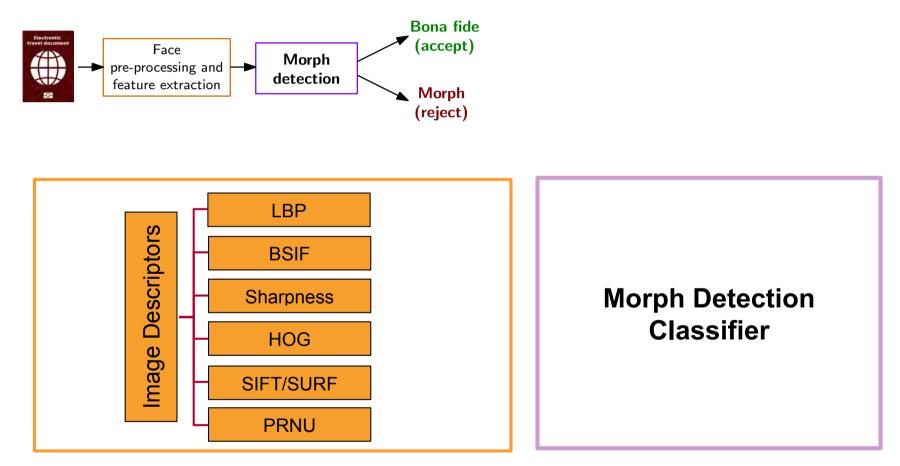


Morphing Attack Detection (MAD) Scenarios and Methods

Morphing Attack Detection Scenarios

Real world scenarios

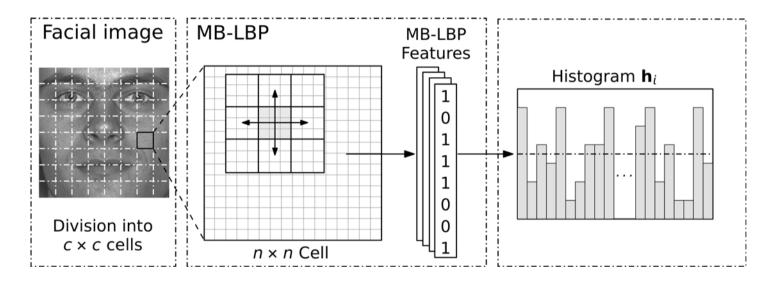
- Single image morphing attack detection (S-MAD)
 - One single suspected facial image is analysed (e.g. in the passport application)


[SRB2018a] U. Scherhag, C. Rathgeb, C. Busch: "Towards Detection of Morphed Face Images in electronic Travel Documents", in Proceedings of the 13th IAPR International Workshop on Document Analysis Systems (DAS), April 24-27, (2018)

Christoph Busch

Morphing Attack Detection

Morphing Attack Detection (S-MAD) with texture analysis


• Image descriptors as hand-crafted features

[SRB2018b] U. Scherhag, C. Rathgeb, C. Busch: "Detection of Morphed Faces from Single Images: a Multi-Algorithm Fusion Approach", in Proceedings if of the 2nd International Conference on Biometric Engineering and Applications (ICBEA), Amsterdam, The Netherlands, May 16-18, (2018)

S-MAD with image descriptor

Local Binary Pattern (LBP)

S-MAD with Scale-Space features

- Transformation to different color spaces
- Laplacian decomposition

YCbCr HSV HSV Scale Space Representation

[RVRB2019] R. Raghavendra, S. Venkatesh, K. Raja, C. Busch: "Towards making Morphing Attack Detection robust using hybrid scale-space Colour Texture Features", in Proceedings of the International Conference on Identity, Security and Behavior Analysis (ISBA), (2019)

HSV color space

Laplacian Pyramic

(3 levels)

Laplacian Pyramid

(3 levels)

MAD score fusion: SUM rule

Morphed/Bona fide

aplacian Pyramid

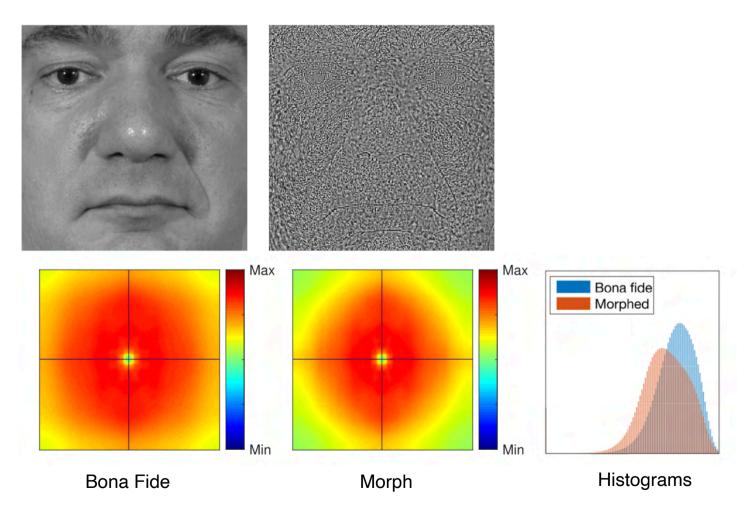
(3 levels

Lanlacian Pyramid

(3 levels)

YCbCr color space

Laplacian Pyramid

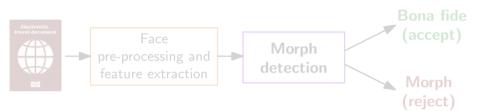

(3 levels

Laplacian Pyramid

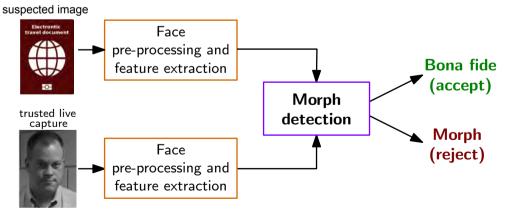
(3 levels)

S-MAD with image descriptor / forensic approach

Photo Response Non-Uniformity (PRNU)



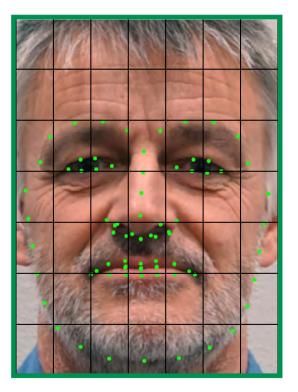
[SDRBU2019] U. Scherhag, L. Debiasi, C. Rathgeb, C. Busch and A. Uhl: "Detection of Face Morphing Attacks based on PRNU Analysis", in IEEE TBIOM, (2019)

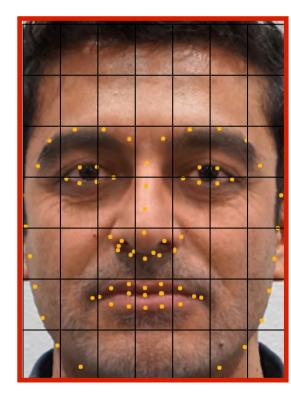

Morphing Attack Detection Scenarios

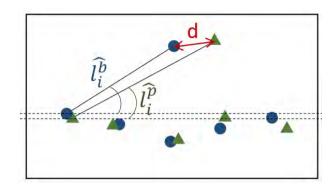
Real world scenarios

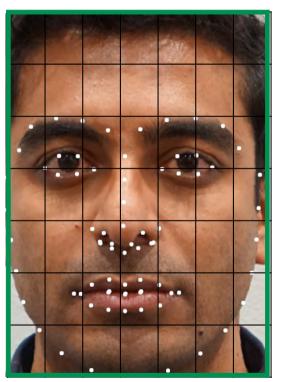
- Single image morphing attack detection (S-MAD)
 - One single suspected facial image is analysed (e.g. in the passport application)

- Differential morphing attack detection (D-MAD)
 - A pair of images is analysed and one is a trusted Bona Fide image
 - Biometric verification (e.g. at the border)

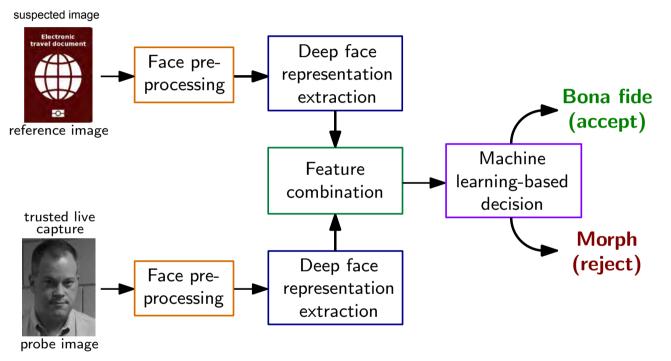

[SRB2018a] U. Scherhag, C. Rathgeb, C. Busch: "Towards Detection of Morphed Face Images in electronic Travel Documents", in Proceedings of the 13th IAPR International Workshop on Document Analysis Systems (DAS), April 24-27, (2018)


Christoph Busch


Differential Morphing Attack Detection


D-MAD with landmark analysis

- Angle based features
- Distance based features

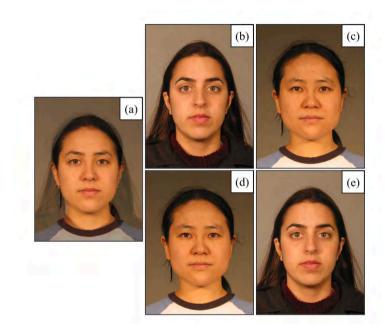


[SDGB2018] U. Scherhag, D. Budhrani, M. Gomez-Barrero, C. Busch: "Detecting Morphed Face Images Using Facial Landmarks", in Proceedings of International Conference on Image and Signal Processing (ICISP), (2018)

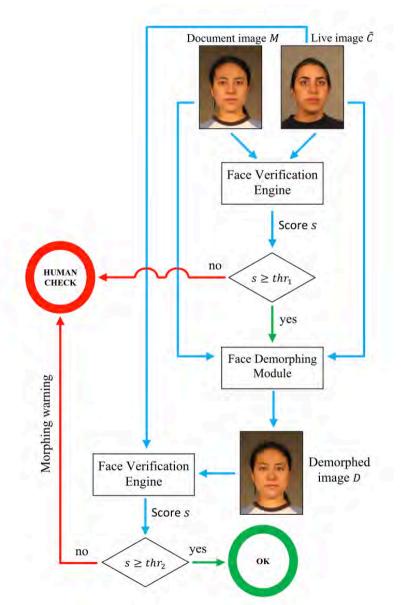
Differential Morphing Attack Detection

D-MAD with deep learning

Deep Face representations of Deep CNNs

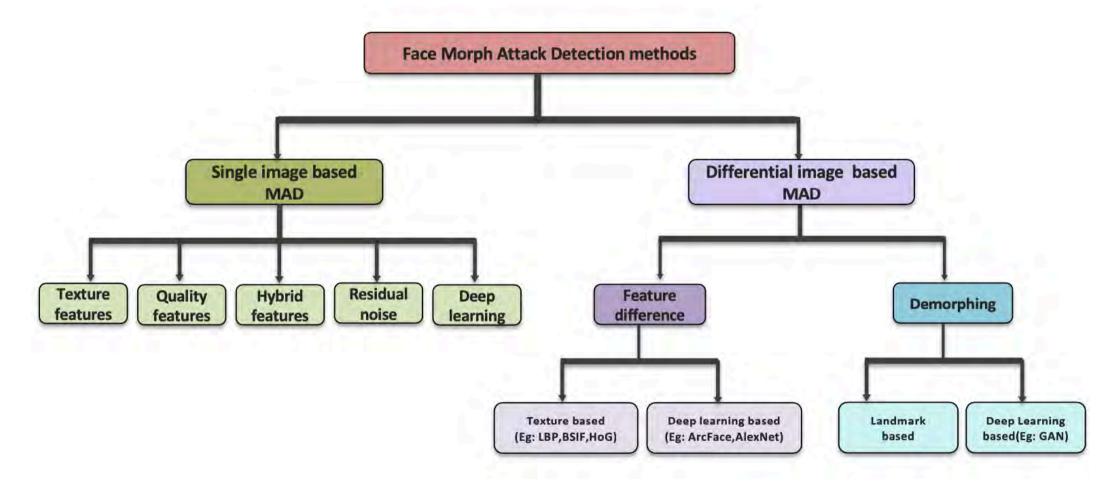

- > Deep representations extracted by the neural network (on the lowest layer)
- Feature space with small dimension: 512 (for ArcFace)
- SVM with radial basis function

[SRMB2020] U. Scherhag, C. Rathgeb, J. Merkle, C. Busch: "Deep Face Representations for Differential Morphing Attack Detection", in IEEE Transactions on Information Forensics and Security (TIFS), (2020)


Differential Morphing Attack Detection

D-MAD with Demorphing

- Invert the morphing process
- Then confirm the similarity score


- a) suspected image
- b) and c): trusted live capture image
- d) and e): recovery image

[Ferrara2018] M. Ferrara, A. Franco, D. Maltoni: "Face Demorphing", in IEEE Transactions on Information Forencics and Security (TIFS), (2018)

State of the Art - MAD Algorithms

Taxonomy of Morphing Attack Detection

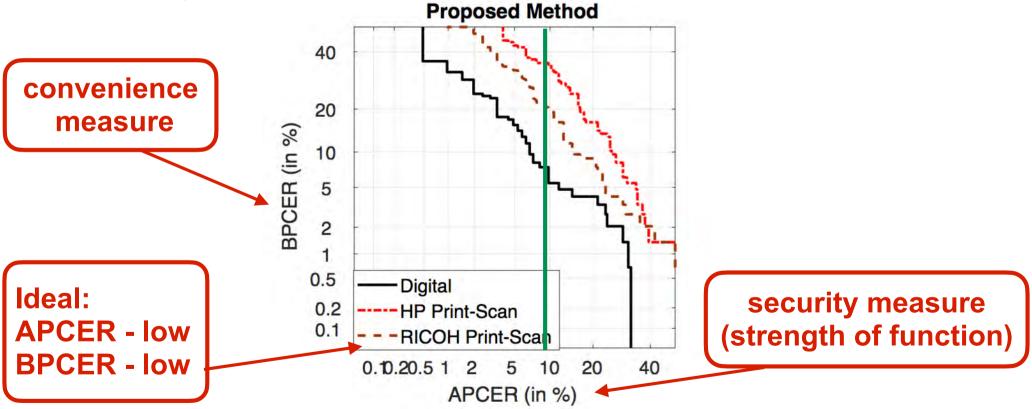
[Venkatesh2021] S. Venkatesh, R. Raghavendra, K. Raja, C. Busch: "Face Morphing Attack Generation & Detection: A Comprehensive Survey", in IEEE Transactions on Technology and Society (TTS), (2021)

Christ	toph	Busch

MAD Evaluation

Standardized Testing Metrics

Definition according to ISO/IEC 30107-3


- Testing the false-negative and false-positive errors:
- Attack presentation classification error rate (APCER) proportion of attack presentations using the same PAI species incorrectly classified as bona fide presentations in a specific scenario
- Bona fide presentation classification error rate (BPCER) proportion of bona fide presentations incorrectly classified as attack presentations in a specific scenario

source: [ISO/IEC 30107-3] SO/IEC 30107-3, "Biometric presentation attack detection -Part 3: Testing and reporting", (2017) https://www.iso.org/standard/67381.html

Standardized Testing Metrics

Definition of metrics in ISO/IEC 30107-3

- DET curve analyzing operating points for various thresholds and plot convenience measures over security measures
- Example:

Source: R. Raghavendra, K. Raja, S. Venkatesh, C. Busch: "Transferable Deep-CNN features for detecting digital and print-scanned morphed face images", in Proceedings of 30th International Conference on Computer Vision and Pattern Recognition Workshop (CVPRW 2017), Honolulu, Hawaii, July 21-26, (2017)

Christoph Busch

MAD Evaluation Methodology

Face Morphing Attack evaluations are complex

- Evaluations must consider a dedicated methodology [SNR2017]
- Evaluations must consider many parameters

result = f (dataset-training, dataset-testing, morphing-attack, landmark-detector, feature-extractor, classifier, scenario (S-MAD vs. D-MAD), post-processing, printer, scanner, ageing)

- Postprocessing:
 - Unprocessed
 - resized (to passport resolution)
 - JPEG2000
 - Print/Scan-JPEG2000

[SRB2022] U. Scherhag, C. Rathgeb, C. Busch, "Face Morphing Attack Detection Methods", in Springer Handbook of Digital Face Manipulation and Detection: From DeepFakes to Morphing Attacks, (2022)

Christoph Busch

MAD Evaluation in SOTAMD

EU funded project: February 2019 – January 2020

- Partners:
 - National Office for Identity Data, NL, Bundeskriminalamt (BKA), DE
 - University of Bologna (UBO), IT, Hochschule Darmstadt (HDA), DE
 - The University of Twente (UTW), NL, NTNU, NO

Specific objectives:

- Capture face images from 150 subjects
 - with photo equipment and automated border control gates
- Generate morphed face images with at least 3 algorithms

Morphing Attack Detection

- Post-process automatically and manually
- Print and scan all morphed face images
- MAD Test on the Bologna-Online-Evaluation-Platform (BOEP)
 - Provide open access benchmark tests.
 - D-MAD evaluation:

https://biolab.csr.unibo.it/FVCOnGoing/UI/Form/BenchmarkAreas/BenchmarkAreaDMAD.aspx

Research on Morphing Attack Detection

MAD Evaluation in SOTAMD

 SOTAMD dataset and BOEP testing platform https://ieeexplore.ieee.org/document/9246583

Morphing Attack Detection - Database, Evaluation Platform and Benchmarking

Kiran Raja*, Matteo Ferrara[†], Annalisa Franco[†], Luuk Spreeuwers[‡], Ilias Batskos[‡], Florens de Wit[‡], Marta Gomez-Barrero**, Ulrich Scherhag^{‡‡}, Daniel Fischer^{‡‡}, Sushma Venkatesh*, Jag Mohan Singh*, Guoqiang Li*, Loïc Bergeron*, Sergey Isadskiy^{‡‡}, Raghavendra Ramachandra*, Christian Rathgeb^{‡‡}, Dinusha Frings[§], Uwe Seidel^{††}, Fons Knopjes[§], Raymond Veldhuis[‡], Davide Maltoni[†], Christoph Busch* *NTNU, Norway, [†]UBO, Italy, [‡]UTW, The Netherlands, **HS-Ansbach, Germany, ^{‡‡}HDA, Germany, [§]NOI, The Netherlands, ^{††}Bundeskriminalamt, Germany

Abstract—Morphing attacks have posed a severe threat to Face Recognition System (FRS). Despite the number of advancements reported in recent works, we note serious open issues such as independent benchmarking, generalizability challenges and considerations to age, gender, ethnicity that are inadequately addressed. Morphing Attack Detection (MAD) algorithms often are prone to generalization challenges as they are database dependent. The existing databases, mostly of semi-public nature, lack in diversity in terms of ethnicity, various morphing process and post-processing pipelines. Further, they do not reflect a realistic operational scenario for Automated Border Control (ABC) and do not provide a basis to test MAD on unseen data, in order to benchmark the robustness of algorithms. In this work, we present a new sequestered dataset for facilitating the advancements of MAD where the algorithms can be tested on unseen data in an effort to better generalize. The newly constructed dataset consists of facial images from 150 subjects from various ethnicities, age-groups and both genders. In order to challenge the existing MAD algorithms, the morphed images are with careful subject pre-selection created from the contributing images, and further post-processed to remove morphing artifacts. The images are also printed and scanned to remove all digital cues and to simulate a realistic challenge for MAD algorithms. Further, we present a new online evaluation platform to test algorithms on sequestered data. With the platform we can benchmark the morph detection performance and study the generalization ability. This work also presents a detailed analysis on various subsets of sequestered data and outlines open challenges for future directions in MAD research.

Index Terms-Biometrics, Morphing Attack Detection, Face Recognition, Vulnerability of Biometric Systems

[Raja2020] K. Raja, M. Ferrara, A. Franco, L. Spreeuwers, I. Batskos, F. Wit, M. Gomez-Barrero, U. Scherhag, D. Fischer, S. Venkatesh, J. Singh, G. Li, L. Bergeron, S. Isadskiy, R. Raghavendra, C. Rathgeb, D. Frings, U. Seidel, F. Knopjes, R. Veldhuis, D. Maltoni, C. Busch: "Morphing Attack Detection - Database, Evaluation Platform and Benchmarking", in IEEE Transactions on Information Forensics and Security (TIFS), (2020)

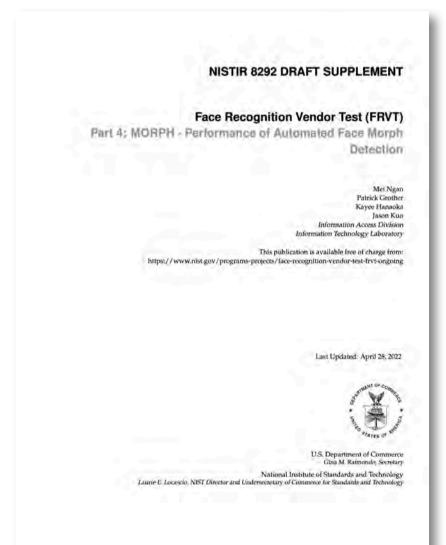
MAD Evaluation

Bologna Online Evaluation Platform (BOEP)

• A new benchmark area for morphing attack detection https://biolab.csr.unibo.it/fvcongoing/UI/Form/BOEP.aspx

	utomated web-based evaluation system hosted in the FVC-onGoing framework specifically designed to evaluate Morph Attack Detection (MAD) algorithms. It has been designed and context of the SOTAMD European project and it is supported by EU funded project iMars.
Benchmark	Areas
OEP contais the	following benchmark areas:
-	Single-image Morph Attack Detection
9.	This benchmark area contains face morphing detection benchmarks. Morphing detection consists in analyzing a face image to determine whether it is the result of a morphing process (mixing faces of two subjects) or not. Algorithms submitted to these benchmarks are required to analyze a suspected morph image and produce a score representing the probability of the image to be morphed. Read more
-	Differential Morph Attack Detection
0.0	This benchmark area contains face morphing detection benchmarks. Morphing detection consists in analyzing a face image to determine whether it is the result of a morphing process (mixing faces of two subjects) or not. Algorithms submitted to these benchmarks are required to compare a suspected morph image to a bona fide (not morphed) one and produce a score representing the probability of the suspected morph image to be a morphed face image. Read more

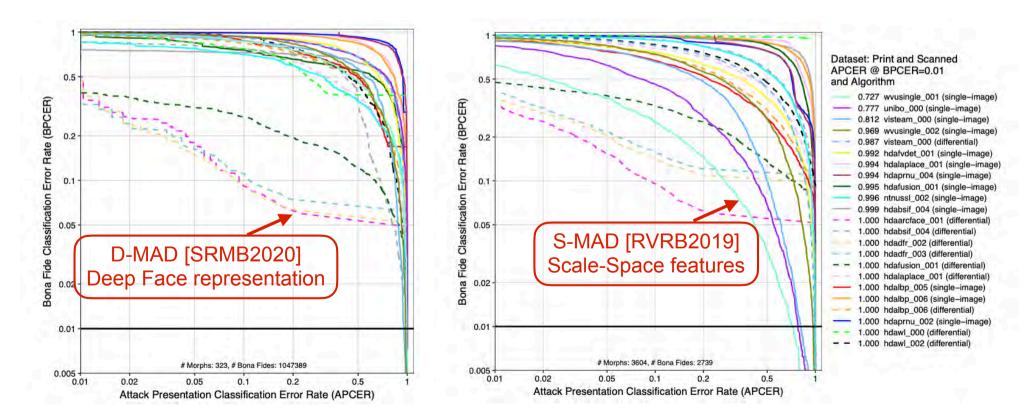
- Both scenarios: D-MAD and S-MAD
- Two benchmarks to evaluate different image types:
 - Digital or Printed/Scanned images
- Possibility of analysing results according to specific factors:
 - Manual or automatic morphing
 - Morphing approaches and parameters (e.g., morphing factor)
 - Gender, ethnicity, age, etc.


NIST FRVT MORPH

NIST IR 8292 report presented April, 2022

FRVT MORPH

https://pages.nist.gov/frvt/html/frvt_morph.html


- results for MAD algorithms from six research labs:
 - Hochschule Darmstadt (HDA)
 - Norwegian University of Science and Technology (NTNU)
 - University of Bologna (UBO)
 - University of Twente (UTW)
 - Universidade de Coimbra (VIS)
 - West Virginia University (WVU)

NIST FRVT MORPH

NIST IR 8292 report presented April, 2022

- Performance of Automated Face Morph Detection https://pages.nist.gov/frvt/reports/morph/frvt_morph_report.pdf
- results for high quality morphs versus print and scanned
 - note the low number of print and scanned images

Conclusion

We are facing a situation, where

- Passports with morphs are already in circulation
 - 1000+ reported cases
 - Switch to live enrolment is a good decision, but does not solve the problem
- Passports with morphed face images will have a major impact on border security
 - introduction of EU's entry/exit system, global migration flows
- In combination with passport brokers a dramatic problem
 - ▶ the darknet offers numerous such opportunities ...

More information

The MAD website

https://www.christoph-busch.de/projects-mad.html

The MAD survey papers

- U. Scherhag, C. Rathgeb, J. Merkle, R. Breithaupt, C. Busch: "Face Recognition Systems under Morphing Attacks: A Survey", in IEEE Access, (2019) https://ieeexplore.ieee.org/document/8642312
- S. Venkatesh, R. Raghavendra, K. Raja, C. Busch: "Face Morphing Attack Generation & Detection: A Comprehensive Survey", in IEEE Transactions on Technology and Society (TTS), (2021) https://ieeexplore.ieee.org/document/9380153

Face Morphing Attack	Generation & Detection:
A Comprehe	nsive Survey
Norwegian University of Science	chandra Kiran Raja Christoph Busch and Technology (NTNU), Norway andrea kiran.rajarchristoph.busch} #stsu.no
<text><section-header><section-header></section-header></section-header></text>	strength of the second

More information

The MAD workshop

https://eab.org/events/program/229

- Luuk Spreeuwers (University of Twente) recorded talk
 - Morphing Attacks on Face Recognition Systems
- David Robertson (University of Strathclyde) recorded talk
 - Psychological Experiments on Morphed Faces
- Kiran Raja (NTNU) recorded talk
 - Morphing Attack Detection Approaches
- Matteo Ferrara (University of Bologna) recorded talk
 - Bologna Online Evaluation Platform
- Frøy Løvåsdal (Norwegian Police) recorded talk
 - Morphing Attack Detection Capabilities of Human Examiners
- Mei Ngan (NIST) recorded talk
 - Face Morphing Detection Evaluation
- Naser Damer (Fraunhofer IGD) recorded talk
 - Generating Morphs with Generative Adversarial Networks
- Christian Rathgeb (Hochschule Darmstadt) recorded talk
 - Detection of Face Beautification Manipulations
- Uwe Seidel (BKA)
 - Research Needs for Morphing Attack Detection

Thanks

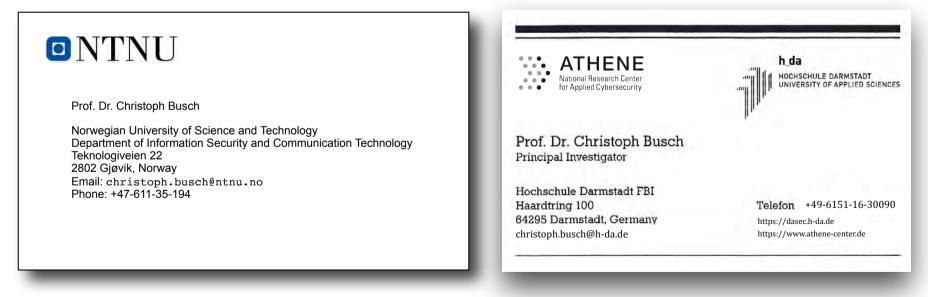
I would like to thank the sponsors of this work:

- NGBS-Project funded by ATHENE
- SWAN-Project funded by RCN
- FACETRUST-Project funded by BSI
- SOTAMD-Project funded by the European Union's Internal Security Fund — Borders and Visa
- iMARS-Project has received funding from the European Union's H2020 research and innovation programme under grant agreement No 883356
 - The content of this presentation represents the views of the author only and is his sole responsibility.

The European Commission does not accept any responsibility for use that may be made of the information it contains.

Morphing Attack Detection

Thanks


I would like to thank my colleagues working on this topic:

- In the NBL HDA research group:
 - Kiran Raja, Raghu Ramachandra, Loic Bergeron, Sankini Godage, Guoqiang Li, Jag Mohan Singh, Sushma Venkatesh, Haoyu Zhang
 - Ulrich Scherhag, Christian Rathgeb, Daniel Fischer, Siri Lorenz, Robert Nichols Sergey Isadskiy, Marta Gomez-Barrero, Juan Tapia, Mathias Ibsen
- In the FACETRUST-Project:
 - Ralph Breithaupt, Johannes Merkle
- In the SOTAMD-Project and iMARS-Project:
 - Dinusha Frings, Fons Knopjes, Uwe Seidel, Frøy Løvåsdal
 - Davide Maltoni, Matteo Ferrara, Analisa Franco
 - Raymond Veldhuis, Luuk Spreeuwers,
- In the NIST-FRVT-MORPH-Project:
 - Mei Ngan, Patrick Grother

Contact

Research opportunities

- Darmstadt (Germany) https://dasec.h-da.de/
- Gjøvik (Norway) https://www.ntnu.edu/nbl
- Internships possibility for Msc and PhD students with travel grant
- Collaboration with governmental and industrial partners

References

Publications available https://www.christoph-busch.de/projects-mad.html

- U. Scherhag, C. Ratgeb, J. Merkle, C. Busch: "Deep Face Representations for Differential Morphing Attack Detection", in IEEE Transactions on Information Forensics and Security (TIFS), (2020)
- S. Venkatesh, H. Zhang, R. Raghavendra, K. Raja, N. Damer, C. Busch: "Can GAN Generated Morphs Threaten Face Recognition Equally as Landmark Based Morphs? Vulnerability and Detection", in Proceedings of 8th International Workshop on Biometrics and Forensics (IWBF 2020), Porto, PT, April 29 30, (2020)
- S. Venkatesh, R. Raghavendra, K. Raja, L. Spreeuwers, R. Veldhuis, C. Busch: "Detecting Morphed Face Attacks Using Residual Noise from Deep Multi-scale Context Aggregation Network", in Proceedings of Winter Conference on Applications of Computer Vision (WACV '20), Colorado, US, March 1-5, (2020)
- J. Merkle, C. Rathgeb, U. Scherhag, C. Busch: "Morphing-Angriffe: Ein Sicherheitsrisiko für Gesichtserkennungssysteme", in Datenschutz und Datensicherheit (DuD), Vol. 44, no. 1, pp. 26-31, (2020)
- J. Singh, S. Venkatesh, K. Raja, R.Raghavendra, C. Busch: "Detecting Finger-Vein Presentation Attacks Using 3D Shape & Diffuse Reflectance Decomposition", in Proceedings of the 15th International Conference on Signal Image Technology & Internet Based Systems (SITIS 2019), November 26-29, Sorrento Naples, IT, (2019)
- S. Venkatesh, R. Raghavendra, K. Raja, L. Spreeuwers, R. Veldhuis, C. Busch: "Morphed Face Detection Based on Deep Color Residual Noise", in Proceedings of the ninth International Conference on Image Processing Theory, Tools and Applications (IPTA 2019), Istanbul, Turkey, November 6-9, (2019)
- U. Scherhag, L. Debiasi, C. Rathgeb, C. Busch and A. Uhl: "Detection of Face Morphing Attacks based on PRNU Analysis", in IEEE TBIOM, (2019)
- U. Scherhag, C. Rathgeb, J. Merkle, R. Breithaupt, C. Busch: "Face Recognition Systems und Morphing Attacks: A Survey", in IEEE Access, (2019)
- R.Raghavendra, S. Venkatesh, K. Raja, C. Busch: "Towards making Morphing Attack Detection robust using hybrid Scale-Space Colour Texture Features", in Proceedings of 5th International Conference on Identity, Security and Behaviour Analysis (ISBA 2019), Hyderabad, IN, January 22-24, (2019)
- L. Debiasi, C. Rathgeb, U. Scherhag, A. Uhl, C. Busch: "PRNU Variance Analysis for Morphed Face Image Detection", in Proceedings of 9th International Conference on Biometrics: Theory, Applications and Systems (BTAS 2018), Los Angeles, US, October 22-25, (2018)
- R.Raghavendra, S. Venkatesh, K. Raja, C. Busch: "Detecting Face Morphing Attacks with Collaborative Representation of Steerable Scale-Space Features", in Proceedings of 3rd International Conference on Computer Vision and Image Processing (CVIP 2018), Japalpur, IN, September 29 - October 1, (2018)
- U. Scherhag, D. Budhrani, M. Gomez-Barrero, C. Busch: "Detecting Morphed Face Images Using Facial Landmarks", in Proceedings of International Conference on Image and Signal Processing (ICISP 2018), Cherbourg, FR, July 2-4, (2018)
- U. Scherhag, C. Rathgeb, C. Busch: "Performance Variation of Morphed Face Image Detection Algorithms across different Datasets", in Proceedings of 6th International Workshop on Biometrics and Forensics (IWBF 2018), Sassari, IT, June 7-8, (2018)
- L. Debiasi, U. Scherhag, C. Rathgeb, A. Uhl, C. Busch: "PRNU-based Detection of Morphed Face Images", in Proceedings of 6th International Workshop on Biometrics and Forensics (IWBF 2018), Sassari, IT, June 7-8, (2018)
- U. Scherhag, C. Rathgeb, C. Busch: "Detection of Morphed Faces from Single Images: a Multi-Algorithm Fusion Approach", in Proceedings if of the 2nd International Conference on Biometric Engineering and Applications (ICBEA 2018), Amsterdam, The Netherlands, May 16-18, (2018)
- U. Scherhag, C. Rathgeb and C. Busch: "Towards Detection of Morphed Face Images in electronic Travel Documents", in Proceedings of the 13th IAPR International Workshop on Document Analysis Systems (DAS 2018), Vienna, Austria, April 24-27, (2018)
- M. Gomez-Barrero, C. Rathgeb, U. Scherhag, C. Busch: "Predicting the Vulnerability of Biometric Systems to Attacks based on Morphed Biometric Samples", in IET Biometrics, (2018)
- C. Rathgeb, C. Busch: "On the Feasibility of Creating Morphed Iris-Codes", in Proceedings of International Joint Conference on Biometrics (IJCB 2017), Denver, Colorado, October 1-4, (2017)
- R. Raghavendra, K. Raja, S. Venkatesh, C. Busch: "Face Morphing Versus Face Averaging: Vulnerability and Detection", in Proceedings of International Joint Conference on Biometrics (IJCB 2017), Denver, Colorado, October 1-4, (2017)
- U. Scherhag, A. Nautsch, C. Rathgeb, M. Gomez-Barrero, R. Veldhuis, L. Spreeuwers, M. Schils, D. Maltoni, P. Grother, S. Marcel, R. Breithaupt, R. Raghavendra, C. Busch: "Biometric Systems under Morphing Attacks: Assessment of Morphing Techniques and Vulnerability Reporting", in Proceedings of the IEEE 16th International Conference of the Biometrics Special Interest Group (BIOSIG), Darmstadt, September 20-22, (2017)
- R. Raghavendra, K. Raja, S. Venkatesh, C. Busch: "Transferable Deep-CNN features for detecting digital and print-scanned morphed face images", in Proceedings of 30th International Conference on Computer Vision and Pattern Recognition Workshop (CVPRW 2017), Honolulu, Hawaii, July 21-26, (2017)
- M. Gomez-Barrero, C. Rathgeb, U. Scherhag, C. Busch: "Is Your Biometric System Robust to Morphing Attacks?", in Proceedings of 5th International Workshop on Biometrics and Forensics (IWBF 2017), Coventry, UK, April 4-5, (2017)
- U. Scherhag, R. Raghavendra, K. Raja, M. Gomez-Barrero, C. Rathgeb, C. Busch: "On The Vulnerability Of Face Recognition Systems Towards Morphed Face Attacks", in Proceedings of 5th International Workshop on Biometrics and Forensics (IWBF 2017), Coventry, UK, April 4-5, (2017)
- R. Raghavendra, K. Raja, C. Busch: "Detecting Morphed Facial Images", in Proceedings of 8th IEEE International Conference on Biometrics: Theory, Applications and Systems (BTAS-2016), September 6-9, Niagra Falls, USA, (2016)