
FAST IMAGE ANALYSIS USING KOHONEN MAPS

D.Willett, C. Busch, F. Seibert,
Visual Computing Group

Darmstadt Computer Graphics Center
Wilhelminenstraße 7, D 64283 Darmstadt

Tel: +49 6151 155 255, Fax: +49 6151 155 299
E–mail: busch@igd.fhg.de

Abstract – The following paper considers image analysis with Kohonen Fea-
ture Maps. These types of neural networks have proven their usefulness for
pattern recognition in the field of signal processing in various applications. The
paper reviews a classification approach, used in medical applications, in order
to segment anatomical objects such as brain tumors from magnetic resonance
imaging (MRI) data. The same approach can be used for environmental pur-
poses, to derive land–use classifications from satellite image data. These ap-
plications require tremendous processing time when pixel–oriented ap-
proaches are chosen. Therefore the paper describes implementation aspects
which result in a stunning speed–up for classification purposes. Most of them
are based on geometric relations in the feature–space.

The proposed modifications were tested on the mentioned applications.
Impressive speed–up times could be reached independent of specific hardware.

1 INTRODUCTION

Image classification is a crucial step in the image processing pipeline. Typical ap-
plications for image classification are the interpretation of medical data or remote
sensing data. In medical applications modern image acquisition techniques like ma-
gnetic resonance imaging (MRI) supply 3D data sets of high resolution and quality.
3D data need to be classified in order to separate different tissue types such as brain
tumors in the image data. Further processing will use the classified data as input for
3D reconstruction algorithms of the volume. Advanced volume renderers, as in
[5],[9] or [11] require opacity–maps, as well as 3D surface reconstruction methods
like marching cubes [10] or Delaunay triangulation [12] require a description of the
surface, which can be easily derived from the classified data.

Environmental applications use remote sensing data in order to achieve semantic
ground information. Remote sensing data stemming from satellite–based sensors
like SPOT, Landsat–TM or ERS1 can serve as multispectral data input for environ-
mental control systems. Robust image analysis of the data delivers a land–use–clas-
sification.

The following paper reviews in Section 2 a pixel–oriented discrimination method
for image data based on topological mappings of Kohonen[7],[8]. Application stud-

ies as in [4] and [1] have shown that this method can either perform feature extrac-
tion, clustering and classification in a unique approach or – in a more traditional
manner –separate the single steps and calculate the independent components of the
classification pipeline [13],[2].

Corresponding to the immense amount of data that is analyzed in the above men-
tioned applications, the use of the Kohonen Feature Map can be extremely expen-
sive, especially when long feature–vectors are considered. Thus Section 3 proposes
several modifications of Kohonen’s algorithm. They were inspired by the insight,
that most of the computational time is wasted in calculations of Euclidean distances
in the feature–space in order to determine the neuron which bears the closest
weight–vector to a presented input–vector. This task corresponds to the nearest
neighbor search in a multidimensional space. It can be shown that most of the
weight–vectors could be excluded from consideration.

In addition basic constraints can be used, like the similarity of consecutive input–
vectors as they appear in the classification of consecutive pixels stemming from a
homogenous region in an image. Those modifications can be used for clustering or
classification tasks. For classification purposes further optimization is possible,
since only a neuron’s class assignment has to be determined and not the closest neu-
ron itself.

The modifications were implemented and tested on the described applications. Sec-
tion 4 reports some results in terms of speed–up times. The times are not based on
any specific hardware, but nevertheless computing the image classification on pow-
erful hardware like vector– or parallel–processors can realize further speed–up.

2 CLUSTERING AND CLASSIFICATION

2.1 General Remarks
In general, a robust classification pipeline for the automatic recognition, classifica-
tion and visualization of the data can be divided into the following three tasks:

I) feature extraction
II) cluster analysis
III) supervised classification

Those steps can be solved separately, or in a single approach. Kohonen Feature
Maps are capable of solving that task in a unique paradigm, since they allow sub-
space mapping, visualization of a multidimensional texture feature–space and su-
pervised classification. This is explained in detail in [1] and [3].

2.2 Kohonen Mapping
The Kohonen Map as introduced in [7] or [8], is a self–organizing network which
is basically trained without supervision. It organizes a set of input patterns in a topo-
logical structure represented by neurons, where the relations between different pat-
terns are preserved.

To use the Kohonen map for cluster analysis, the Kohonen Map can be configured
with a 3D output–layer as shown in Figure 1. The neurons in the input–layer pick
up the data from the feature–extractor or directly from the image. The weights
associated with each connection of an output–layer’s neuron are adjusted during
training where only one single neuron can be active at a time. A time–dependent
neighborhood implies an update in the neuron’s environment as well. After the self–
organizing training–procedure, each neuron in 3D represents a cluster in the multi-
dimensional feature–space. Therefore the network can be used for cluster analysis
and dimensionality reduction as described in [3].

G=y

R=x
B=z

3D output–layer
(i.e. 6x6x6 neurons)

interconnection
and
adjustable weights

input–layer
receptive field

Image

coordinate system of
the competitive layer

RGB color space

neuron

Fig. 1: Topology of the 3D–Kohonen map.

Essential for training as well as for the work procedure of the network is the spatial
distance in the feature–space, since it decides which neuron in the output–layer is
activated. For a presented data–vector x the distance is calculated to all weight–vec-
tors mi representing the connections between the input–layer and the competitive
layer. If N is the dimension of the data, the Euclidean distance di between x and mi
is defined as

di !" x#mi "! $N
j!1

(xj # mij)2% (1)

The neuron c with the minimum distance is activated, where

dc ! min
i
&di' (2)

The activated neuron is of fundamental importance. On one hand in its environment
the weight–vectors will be updated according to the training rules [7]. On the other
hand its coordinate will be taken as RGB–information for clustering tasks or its class
assignment will be taken as class information for a classification task. Fast and effec-
tive calculation of a winning neuron will be the subject of the next Section.

In order to use a self–organized Kohonen Feature Map for supervised classification
a class assignment for each neuron is required. User defined training areas can set
up a training set, where a class–assignment exists for each sample, i.e. a feature–vec-
tor. Sequentially presentation of labeled input–vectors and subsequent majority vot-
ing can lead to class–assignment of each output neuron. For optimal description of
the Bayes decision boundary, additional postprocessing with learning vector quanti-
zation (LVQ) is recommended [7].

3 SPEED–UP METHODS

3.1 Remarks
The most time consuming part of the classification is the determination of the neuron
in the output–layer which is activated by a given input. It is the neuron whose
weight–vector is the closest to the input–vector in the feature–space.

According to equation (1) and (2) the activated neuron is determined by calculating
the exact Euclidian distances of each weight–vector to the input–vector and select-
ing the one with the least distance. Slight changes of this process can bring the first
improvements.

Avoiding the square–root–function. In order to calculate the Euclidean distance
of two vectors, the square–root–function is used. For the given purpose only the rela-
tion between the Euclidean distances is of importance. Thus we simply change equa-
tion (1) and (2) and calculate the squared distances

di
2 !" x – mi "2!$N

j!1
(xj – mij)2

(3)
and determine the activated neuron c with

dc
2 ! min

i
&di

2' (4)
So in the following text the distance in general refers to the square of an Euclidian
distance.

Furthermore the term best vector will be used for the temporary closest vector found.
A good vector in general will be any weight vector close to the input–vector.

Threshold Summation. During the calculation of the distances, the best distance
can be used as a threshold [6]. If, while performing the summation in formula (3)
we reach a sum greater than the threshold, even if j < N, then we can stop and disre-
gard this vector.

Usage of Correlated Input. The threshold summation and other optimization given
in this text are most effective whenever a good vector is found early during the cal-

culation, so that the determination of the exact distance of many other vectors can
be avoided. In a lot of applications the input presented in one step correlates to the
input presented in the previous step. If such a correlation is obvious, as in the pixel-
based image–segmentation, the activated neuron of the previous step should be con-
sidered first in the activation–algorithm.

3.2 Immediate Activation
Once a map has been trained, its weight–vectors remain static. The distances bet-
ween the weight–vectors themselves can be calculated in advance in order to be used
to optimize the calculations. A first approach is illustrated in the figure below which
refers to a 2–dimensional feature–space. The circle around each weight–vector has
a radius ri of half the minimum distance to all other vectors.

feature1

feature2
ri

input–vector

weight–vectors

Fig. 2: Areas of immediate activation around the
weight–vectors in the feature–space

Once an input–vector turns out to be situated inside of an activation area,

di
2 (ri

2) di (ri) di ! min
j
&dj' (5)

the closest weight–vector is the one in the center of that area. Thus the activated neu-
ron is found.

When using labeled neurons, like for classification purposes, only the label of the
activated neuron is relevant. Areas of neurons with the same label may overlap. In
Figure 3 the labels of the neurons are represented by different shadings of the areas.

feature1

feature2

Fig. 3: Areas of immediate classification (identical
shading refers to identical classes)

The immediate activation does not give an idea of how to find the weight–vector in
whose circle the input might be situated. In the worst case it is the last vector that
is being considered and the immediate activation does not save time at all. For this
reason Section 3.3 and 3.4 present two relations which can be used in addition to the
immediate activation to avoid the determination of several distances.

3.3 Triangle Relation
From a mathematical point of view we consider the feature–space as a metric space.
In a metric space the triangle–relation (6) is valid, where d is the distance between
two points.

d(A , C) (d(A , B) * d(B , C) (6)

Looking at any two weight–vectors m1 and m2 and an input–vector x, where the vec-
tors express the coordinates of points in the feature–space, the relation can be trans-
posed to (7).

d(x , m2) + d(m1 , m2) – d(x , m1) (7)

Assuming that the distance between m1 and m2 is at least twice as high as the dis-
tance between m1 and x, it can be concluded that in no case m2 can be closer to x
than m1.

d(m1 , m2) + 2 d(x , m1)) d(x , m2) + d(x , m1) (8)

The activation–algorithm can make use of this circumstance by not considering
those vectors whose distance to the actual best vector is at least twice that high as
the distance of the best vector to the input–vector. For the case that the squared dis-
tances are determined, equation (8) can be transposed to:

d2(m1 , m2) + 4 d2(x , m1)) d(x , m2) + d(x , m1) (9)

where d(x,mi) corresponds to di in equation (3).

3.4 Minimum Distances Derived from the Vector–Sums
In Section 3.3 we used the triangle relation to derive a minimum value for a specific
distance. Once this minimum value turns out to be greater than the best value to that
point of the calculation, the exact distance does not need to be determined anymore.

Another possibility which allows the determination of such a minimum value with
only a few calculations is based on the absolute sum–values of the vectors. Using
the relation

d2(m1 , m2) +
,$ m1 –$ m2-

2

N (10)

where $mi :!$N

j ! 1

mij and mi :! (mi1, mi2, . . . , miN)

one gets another lower boundary for the distance of two vectors, which can be
derived from the sum–values of the vectors. The correctness of relation (10) is fairly
easy to prove.

3.5 Maximum Likelihood–Search
The immediate activation presented in Section 3.2 offers a fast way to determine the
closest vector. The time needed to find out that an input is inside an area of immedi-
ate activation mainly depends on the order in which the vectors are looked at. In the
best case the closest vector is considered first and the immediate activation prevents
the determination of all other distances. In the worst case the closest vector is being
looked at after all other vectors, so that the immediate activation does not help at all.

The main aspect of the Maximum Likelihood–Search is the usage of the minimum
values presented in Sections 3.3 and 3.4 to control the order in which the vectors are
considered. The idea is that the vector with the least minimum value has the highest
probability to be the vector that is being searched for.

3.6 Approximate Determination of a Good Vector
As mentioned in Section 3.1 the success of most of the presented methods largely
depend on how fast a good vector is found. If there is no correlation between the con-
secutive input–vectors, or if the correlation is weak, another method can be applied.
The activation is split up into a two–pass algorithm. During the first pass an approxi-
mation is applied to determine a good vector as an approximate solution. The second
pass should be handled like a normal (optimized) activation–algorithm, starting
with the good vector found in the first pass.

A method to determine a good vector shall now be suggested. It allows the fast deter-
mination of a vector which is at most n times farther away from the input–vector than
the accurate closest vector. The parameter n can be set to any real value greater than
or equal to one.

The basic idea of the approximation is the application of the triangle–relation (3.3)
and the vector–sums (3.4) to mark those vectors that certainly cannot be more than
n times closer to the input than the best vector found so far. The marked vectors do

not need to be considered during the further approximate pass of the algorithm. Once
all vectors are marked or have been considered, the best vector found to that point
is at most n times farther away from the input than the accurate closest vector.

3.7 N–Tree Based Search
Another example of a fast nearest neighbor search is the organization of the given
weight–vectors in an n–dimensional Quadtree. Following this approach the weight–
vectors are ordered according to their positions in hierarchically refined hypercubes,
where each cube contains up to 2n cubes of half of its edge lengths. This subdivision
is done until a fixed number of vectors is inside the cube. In this way the depth of
the subdivision is controlled by the density of the vectors in the feature–space.

The regular box oriented structure allows a reduced calculation of distances by a
privileged search for neighbors in related cubes. Additionally the methods described
in Sections 3.1 and 3.4 can be used for a further reduction of time consuming calcula-
tions.

As shown in Section 4 the usability of N–Trees for next neighbor search depends
on the number of output neurons and the dimension of the input data. High dimen-
sional input data accompanied by only a small number of output neurons causes a
complex and sparse internal structure which results in low performance. The reverse
case of lower data dimension and a large number of vectors shows the advantage of
N–Trees based search in comparison to methods described in previous Sections.

4 APPLICATION AND RESULTS

4.1 General Remarks
The methods outlined in Section 3 were tested on two different applications where
both deal with multidimensional image data. Both applications face an 8–class prob-
lem.

The medical application aims at segmentation of brain tumors in MRI–Data which
is required in order to gain knowledge about localization and extension of the tumor
in the skull. That knowledge can be used as input for 3D–renderers of 3D–surface
reconstruction algorithms. Section 4.2 refers to a volume data set of 5 slices, where
each slice is recorded as a two–channel image of size 256x256 pixels. The environ-
mental application uses satellite image data, which was recorded from Landsat–TM.
For environmental control the six–channel image data was analyzed with 1000x100
pixels in each channel. The classified image data outlines the actual land–use and
illustrates the impact of pollution sources in the environment.

4.2 Measured Times of Calculation
The success of the different methods given in Section 3 widely depends on the data
that the Kohonen–Map is used for. Furthermore it depends on the size of the feature–
vector. In order to give an idea of the amount of possible optimization, the following
table shows the measured times of calculation for different kinds of image–seg-
mentations on a HP–Workstation 720 and a DEC–Workstation 5000/240.

Method applied Cl
as

sif
yi

ng
 5

 sl
ic

es
of

 2
56

x2
56

 P
ix

el
s

w
ith

 a
 m

ap
 o

f 5
4

in
pu

t–
ne

ur
on

s a
nd

a
6x

6x
6

ou
tp

ut
–l

ay
er

57.10

4.32

4.11

4.39

6.53

57.10

3.33

3.03

4.24

4.00

minutes

minutes

minutes

minutes

minutes

minutes

minutes

minutes

minutes

minutes

Determination of all distances
while avoiding the square–root–
function (see 3.1)
All aspects from 3.1,
Immediate Activation (see 3.2),
Triangle Relation (see 3.3)
As above and additionally
use of Relation (10) (see 3.4)

Maximum Likelihood–Search
(see 3.5)

2–pass determination with an
approximating first pass (see 3.6)

N–Tree–Search (see 3.7)

on
 a

 H
P

72
0

Im
ag

e
da

ta

Cl
as

sif
yi

ng
 a

 P
ic

tu
re

of
 1

00
0x

10
0

pi
xe

ls
w

ith
 a

 m
ap

 o
f 6

in
pu

t–
ne

ur
on

s a
nd

a
9x

12
x1

8
ou

tp
ut

la
ye

r
on

 a
 D

EC
 5

00
0/

24
0

20.97

11.15

5.72

31.88

minutes

minutes

minutes

minutes

26.22

15.15

10.11

4.81

minutes

minutes

minutes

minutes
Cl

as
sif

yi
ng

 a
 P

ic
tu

re
of

 1
00

0x
10

0p
ix

el
s

w
ith

 a
 m

ap
 o

f 5
4

in
pu

t–
ne

ur
on

s a
nd

a
6x

6x
6

ou
tp

ut
–l

ay
er

on
 a

 D
EC

 5
00

0/
24

0

Cl
us

te
rin

g
5

sli
ce

s
of

 2
56

x2
56

 P
ix

el
s

w
ith

 a
 m

ap
 o

f 5
4

in
pu

t–
ne

ur
on

s a
nd

a
6x

6x
6

ou
tp

ut
–l

ay
er

on
 a

 H
P

72
0

Fig. 4: Measured times according to different
modifications and methods

5 CONCLUSION
We conclude that image segmentation based on Kohonen Feature Maps is an excel-
lent tool to realize pixel–oriented analysis of images. Unfortunately the imple-
mentation of the straightforward algorithm leads to enormous computation times.
In order to make the image analysis acceptable for applications optimizations of the
algorithm are required. The proposed modifications fulfill this requirement since
our results demonstrate that a reduction to approx. 5% of the standard implementa-
tion could be reached.

The time consuming part of the Kohonen Feature Map reduced by our modifications
is the determination of the weight vector next neighbored to the input–vector. So the
proposed optimizations realize a fast and effective next neighbor search which can
be directly transposed to other applications in the field of classification and com-
putational geometry.

The presented results demonstrate that image analysis can be computed in a accept-
able time even without parallelization on special and expensive hardware. Never-
theless a subset of the aspects in this paper can be applied on a vector architecture.

6 ACKNOWLEDGMENTS
The authors would like to thank the research division of the German Telekom for
the financial support for this work within the project KAMEDIN. Furthermore

many thanks to the GAF (Munich) and the Department of Biophysics and Medical
Radiation Physics of the German Cancer Research Center (Heidelberg) for kindly
providing the image data.

7 REFERENCES
[1] C. Busch, M. Gross: Interactive Neural Network Texture Analysis and Visu-

alization for Surface Reconstruction in Medical Imaging. Computer Graph-
ics forum, Vol.12, No.3,(EUROGRAPHICS’93), pp.C49–C60, (1993)

[2] M. Gross, R. Koch, L. Lippert, A. Dreger: Segmentierung und Klassifikation
von Texturen mittels Wavelets und neuronalen Netzen, DAGM–Proceed-
ings, to be published (1994)

[3] M. Gross, F. Seibert: Visualization of Multidimensional Data Sets using a
Neural Network. The Visual Computer, Vol.10, No.3, pp.145–159, (1993)

[4] M. Gross, F. Seibert: Neural network image analysis for environmental
protection. In Grützner (Edts.): Visualisierung von Umweltdaten 1991, GI,
Berlin – Heidelberg – New York: Springer (1991)

[5] K.H. Höhne, M. Bomas, A. Pommert, M. Riemer, C. Schiers, U. Tiede, G.
Wiebecke: 3D Visualization of Tomographic Volume Data using the Gen-
eralized Voxel Model, The Visual Computer, Vol.6, No.1, pp.28–36, (1990)

[6] R. Koch: Entwicklung eines 2D und 3D Texturanalysesystems basierend auf
einer Merkmalextraktion mit Wavelets, Diplom–thesis, Computer Science
Department, Technische Hochschule Darmstadt, (1994)

[7] T. Kohonen: The Self–Organizing Map. Proceedings of the IEEE, Vol. 78,
No. 9, pp. 1464–1480, (1990)

[8] T. Kohonen: Self–Organization and Associative Memory, Berlin – Heidel-
berg – New York: Springer (1984)

[9] M. Levoy: Display of Surfaces from Volume Data, IEEE CG&A, Vol. 8, No.
5, pp. 29–37, (1988)

[10] W.E. Lorensen, H.E. Cline: Marching cubes: A High Resolution 3D Surface
Construction Algorithm, Computer Graphics, Vol.21, No.4, pp.163–169,
(1987)

[11] G.M. Nielson: Visualization in the Scientific Discovery Loop, EURO-
GRAPHICS’93 tutorial notes, (1993)

[12] F. Preparata, M. Shamos: Computational Geometry. An Introduction, New
York: Springer Publishing Company, (1985)

[13] F. Sauerbier, D. Scheppelmann, H.P. Meinzer: Segmentierung biologischer
Objekte aus CT– und MR– Schnittserien ohne Vorwissen, DAGM–Proceed-
ings, pp.289–293, Springer, (1989)

