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Abstract

This paper considers  the computer–based support for the localization of pathological tissue
within tomographic data. The subject of the approach is the inter–patient analysis of  brain
tissue types such as tumor, CSF, white matter, grey matter, bone, fat tissue and background. The
class tumor hereby represents the superset of  pathological tissue. The analysis pipeline of the
presented approach contains feature extraction, classification, twostep texture analysis and
morphological  postprocessing. Furthermore the paper reports results, that have been
reached on the different steps of the pipeline.

1 Introduction
Segmentation of medical images remains a challenging task, nevertheless imaging techniques have
been developed and improved over the last years. As a consequence a variety of approaches were
made, in order to segment tomographic image data stemming from computer tomography (CT) or
magnetic resonance imaging (MRI). The approaches in general address the identification  and dis-
tinction of tissue types such as grey and white matter separation as well as the localization of patho-
logical tissue. Reliable and robust results of segmentation algorithms are required by various ap-
plications such as irradiation planning, volumetric measurement for tumor regression observation
or surface reconstruction for 3D–Visualization. Applying image analysis techniques to multi–
modal images often involves interactive or semiautomatic techniques [5]. Although there are dif-
ferent approaches that realize an automatic segmentation scheme for tomographic images, they do
have common drawbacks: They either rely on a high number of image bands, which results in
stressful long acquisition times, or their capability is limited to a small number of detectable ana-
tomical classes, such as cerebospinal fluid (CSF), gray and white matter separation as elaborated
in  [11].

Another essential aspect for proper evaluation of segmentation algorithms is the extent of required
user interaction. Automated segmentation according to Özkan’s work[9] requires an interactive
setup in a selected slice of the tomographic data set, while the analysis of the subsequent and neigh-
bored slices is performed automatically. In this sense ”automated algorithms” were defined to be
inter–slice capable. Following this definition the subject of the presented work is to realize a seg-
mentation pipeline that automatically analyzes tomographic data with inter–patient capabilities.

An overview of the segmentation pipeline is given in Figure 1. It was designed to handle tomo-
graphic data such as double–echo sequences from magnetic resonance imaging in a pixel based



approach. It is build of a twostep texture analysis, where step 1 is the mere texture discrimination
and step two is the integration of various results into one combined result.

Figure 1. Three–step segmentation pipeline
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Even though the data that was used for investigation purposes in this paper did contain additional
ct–bands, which were matched to the MRI slices [10], the segmentation approach focuses on a
small number of multiparametric images. In order to compensate the lack of additional signal inten-
sities a texture discriminating component is employed in the pipeline. Well known classical meth-
ods like statistical moments, cooccurrence matrices and textural energy are implemented. A com-
mon disadvantage of these methods is, that they work on texture windows of fixed extension. This
leads to problems at texture borders, where different texture types adjoin inside a texture window.
To reduce this impact a feature extraction method based on the wavelet transform was implemented
and investigated recently in a comparative study [3]. The wavelet technique implies multiresolu-
tional properties and therefore allows the description of local and more global characteristics of the
texture at the same time. An extensive study has shown, that wavelet features lead to higher classifi-
cation rates. Unfortunately this also implies an increase in computational expenses.

The embedded classification technique in the segmentation pipeline is the Kohonen Feature Map,
that has proven its suitability for image classification in a variety of preceding applications [2]. A
self–organized Kohonen Feature Map provides a cluster analysis of the tomographic input data and
after additional learning–cycles with Kohonen’s LVQ–learning on a training set defined by an ex-
pert, it serves as a supervised classifier.

Section 2 of this paper will consider the combination method employed in the pipeline. Results that
were made with the additional postclassifying filtering are reported in Section 3 of this paper.

2 Combination Methods
To improve the reliability of the classification result the analysis pipeline performs a two–step tex-
ture analysis [3], [8]. The basic idea is, that features from different extraction methods are not accu-
mulated in one feature vector. In contrary, for each method an individual classifier is trained (step
one of the pipeline) and the results, which were calculated with n different classifiers are combined
in a second step. For this purpose a very stringent operation with boolean operators as well as con-
sideration of statistical weights and fuzzy techniques may be used. The additional classification
effort with the twostep texture analysis leads to the following advantages: On the one hand the over-
all classification rates can be improved and on the other hand the final result is much more robust
against failures of a single classification method.



2.1. Confidential Measure
A suitable solution for the combination task is the consideration of statistical weights [3] (statistical
linking) or the employment of a fuzzy system [7]. Both rely on an assumption for the reliability of
each contributing classification result. This reliability can be quantified using a confidential mea-
sure pk

cls for the associated classifier k.

( 1 )   pk
cls !

RP
(RP " FN)

RP
(RP " FP)

where RP (right–positive), FN (false–negative) and FP (false–positive) can be derived from the
known confusion matrices of the individual classification method k. Furthermore the measure pk

cls
is calculated class–specificly to class cls, and used as bias for statistical linking or scaling of single
tones within a fuzzy system. Figure 2 gives an example for a derived fuzzy set, where membership
rates rely on the confidential measure.

Figure 2. Singleton–Set of a classifier k for fuzzy combination of classification results
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More details about fuzzy systems such as the fuzzification component, inference engine, and de-
fuzzification component, as well as the design of appropriate rules can’t be explained here in detail,
but can be found in the literature [7].

2.2. Combination Results
The improvement reached by the combination method has two aspects: First confusion matrices,
that describe classification rates of the combined results show fewer confusions than the original
input results. Second, one can state, that the amount of misclassified pixels can be reduced signifi-
cantly.

The outlined segmentation pipeline was tested on over 70.000 test samples stemming from 11 pa-
tients with identical pathology. The investigated data sets (with T2–weighted band, pw–weighted
band and ct–band) were classified with different classifiers. A comparative study concerning the
associated feature extraction methods can be found in [3]. The mentioned classification result now
serves as data input for a fuzzy combination component, were the rules were generated on the refer-
ence data. In addition a linear separation of the ct–band was made, which provides a classification
of the bone structure.



Figure 3. Confusion matrix for combined classification result
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The overall confusion matrix of the combination method is given in Figure 3. The class STAT here-
by contains all pixels, that were rejected by the combination method. Rejection occurs if none of
the designed fuzzy rules matches the problem due to contradicting class assignments in the input
classification results.

Figure 4. T2–weighted 
band from 
original data set

Figure 5. Classification 
result of 
Figure 4

Figure 6. Combined result 
of Figure 5 
and others

The above Figures  show the results of step one and step two of the segmentation pipeline. In Fig-
ure 4 the T2–weighted band from the original data set is shown. A classification result employing
a specific feature extraction method (textural energy) is given in Figure 5.  Misclassifications, es-
pecially confusions between tumor and CSF can often be observed inside the ventricular system.
These classification errors are identified and eliminated by the combination method in step 2 of the
segmentation pipeline. In the combined result (see Figure 6) only a limited number of misclassified
tumor pixels outside the pathological area remain. For reference purpose the isoline definition, that
was laid out for irradiation  planning, is visualized in Figure 4 marking the pathological area.

3 Postprocessing
Combined result–images are postprocessed in this segmentation pipeline applying morphological
operations. This postclassifying filtering is necessary, since the combination result from Figure 6
is achieved with an pixel–oriented approach and can not yet be considered to be a segmentation.
Within this work the following characteristics, which are essential for further processing, shall de-
fine an image segmentation:

An image is devided in a distinct number of homogenous regions, where each region
is assigned to a tissue type as anatomical class. Isolated misclassified pixels are re-



moved such that contour descriptions of the regions will lead to a limited number of
contour lines.

In order to fulfill this definition removal of isolated pixels and closing of regions are required. For
this postclassifying filtering consecutive operations with binary operators [4] are not suitable, since
they neglect anatomical neighborhood. To remedy this disadvantage morphological operations
were developed for color–coded images [1] and are now applied in this work.

3.1. Morphological Operations on Color–Coded Images
The main intention of the modified operations is, to perform the operation class–overlapping. This
concept allows to consider more than one class (color–code) in one processing step and moreover
verifies the classification result according to semantic rules, which are deduced from basic anatom-
ic knowledge. As an example Figure 7 uses a sensitive dilation A# s(G) B in order to remove mis-
classified CSF–pixels stemming from mixture effects inside the texture window during texture fea-
ture extraction (see [1] for exact definition).

Figure 7. Sensitive dilation on classified images
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The operation works sensitive (identified by Index s) with respect to a defined set G of classes,
where in the given example the classes fat tissue and bone are member of G. In that case the mor-
phological operator B  performs the operation on all background pixels of A and according to the
definition will overwrite with its operator elements all color–codes (class assignments of A) that
are not members of the protected set G.

3.2. Segmentation Results
Morphological postprocessing can significantly improve the classification rates. This holds for the
overall classification rates of segmented images, as well  as for their visual impression. All data–
sets, that were analyzed after step two of the segmentation pipeline were processed with step 3 of
the pipeline and evaluated afterwards according to the test data set.

Figure 8. Confusion matrix for segmentation result
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Figure 9. Segmentation result

The confusion matrix in Figure 8 illustrates the improvement of
classification rates, since most of pixels with an undefined class
assignment were labeled with the correct class by the postproces-
sing operation. The improvement towards an image segmenta-
tion in the above sense is also documented with the output images
in Figure 9. It can be stated, that all misclassified  isolated pixels
from Figure 6 were removed and homogenous regions with
smoothed region borders were formed by the operation. This fi-
nal segmentation identifies a pathological area as closed region.

4 Conclusion
This work addresses the automatic segmentation of tomographic images, which is performed in
a three–step processing pipeline. While step one of the pipeline implements texture discrimination
methods for pixel based classification, step two combines result images and thus improves the reli-
ability of prior decisions. A final postprocessing is performed and eliminates classification errors
according to anatomical rules.

The generalization capabilities of the approach was tested on the consideration of more than 70.000
test samples, which were used for statistical evaluation. The results given in this paper show, that
segmentation of pathological tissue such as brain tumors can be performed with expected classifi-
cation rates of approx. 96%. Thus a robust distinction from 6 other brain tissue classes were made.
This evaluation demonstrates, that in contradiction to Özkan [9] inter–patient analysis of tomo-
graphic data can be realized.
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