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designed to be capable of only two bands (mere double–echo). Additional studies on a subset

of the test samples have proven that no significant decrease of classification rates must be ex-

pected on mere double–echo data.

This study shows that the presented pipeline is capable of inter–patient tissue segmentation.

In addition investigation of inter–scanner generalization were made which resulted in lower

classification rates. This will be the subject of further research.
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The semantically based postprocessing is performed using the operations from Section 5 and

applying the rules shown in Figure 13. This leads to morphologically processed images as

shown in Figure 12. The first step is an operation that removes isolated misclassified pixels

in the scene as they might exist for grey matter, white matter, liquor, tumor, and fat tissue em-

ploying a relative transparent opening. The second step smoothes the contours and closes the

regions. Then a sensitive closing is performed on each of the following anatomical classes:

fat, white matter, grey matter, liquor. The set of protected color values  is the set {tumor, fat,

white matter, grey matter, liquor} without the color of the actual single sensitive closing step.

The output of this smoothing procedure will contain a number of undefined regions. Thus the

finishing operation is a limited filling of undefined regions. This can be achieved by alternat-

ing sensitive dilations on the anatomical classes.

7 Conclusion

This paper presents a fully automated segmentation pipeline for tomographic images. The

main steps of this pipeline are texture classification, combination of classification results and

knowledge based postprocessing using morphological operations for color–coded images.

The wavelet transform is investigated for texture analysis on a large dataset of approx. 70,000

test samples. The comparative evaluation of the classification capabilities leads to mean clas-

sification rates of up to 96% correct test samples. It can be shown that this texture discriminat-

ing method leads to higher classification rates than well known reference methods. It should

be mentioned that these investigations did not consider performance aspects of different tex-

ture discriminating methods. Computing wavelet features requires more computational effort

than traditional methods.

Despite the fact that the presented classification rates are based on multi–modal tomographic

data with three bands (double–echo MRI with matched CT), the segmentation pipeline was
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Figure 10. Step 1:
classification of
multi–band slice
(see Fig. 8 to 9)

Figure 11. Step 2:
combination of
single results

Figure 12. Step 3:
post–processing
using 
anatomical
knowledge

tumor
liquor
white matter
grey matter
fat tissue
background
bone
undefined

Figure 13. Color–codes of classes used
in classification results

tissue type semantically possible neighbors

{tumor, liquor, grey matter, white matter}
{liquor, tumor, grey matter, (white matter), bone}
{white matter, tumor, (liquor), grey matter}
{grey matter, tumor, liquor, white matter}
{fat tissue, background, bone}
{background, fat tissue}
{bone, liquor, fat tissue}

color–code

A classification result for the selected slice of patient dataset 78 (see Figures 7 to 9) is shown

in Figure 10 which was created using the implicit feature extraction method. The reduced clas-

sification rate of the patient data stems from misclassified tumor pixels inside the ventricular

system. The color–codes of tissue types of the investigated brain section are given in Fig-

ure 13. Therein the color–code black is used for all pixels remaining in an undefined state, for

example if none of the above classes were considered appropriate by a classifier.

Figure 11 shows the result which has been achieved solely by combining classification data

stemming from different classifiers (step 2 of the pipeline).
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gray columns. The latter statistic represents the probability that any pixel in a dataset is cor-

rectly classified to one of the defined classes.

For comparison purposes concerning the investigated texture analysis methods, Table 6 shows

class mean values for all methods used in step 1 of the segmentation pipeline.
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The wavelet transform provides slightly higher classification rates than the reference meth-

ods. This supports the chosen multi resolution approach for texture discrimination. Further-

more the wavelet transform show the best minimum classification probability: the lowest re-

sult (referring to patientindex 78) is clearly higher than in all other methods. This can be

interpreted as a better constancy with respect to the generalization capability.

It must be stated that there is no quantitative measure to judge the visual impression. The user

definately expects homogenous closed regions with a low number of misclassifications inside

the regions. This does not always correspond to the quantitative statistics in the tables. This

is due to the fact that training areas are usually defined inside closed texture (tissue) regions.

In order to judge the segmentation pipeline visually, the dataset stemming from the lowest re-

sult is used. Example slices from this dataset are shown in Figures 7 to 9 where the white poly-

gon marks the defined isoline that was actually used for irradiation planing. Thus this polygon

can be interpreted as the enlarged borders of the affected pathological areas.
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The dark gray columns in the above statistics refer to the evaluation of all pixels. Unfortunate-

ly the distribution of training samples among the classes is not homogenous, which results

from  their anatomical diversity. For example the definition of a large training area for the class

background is much easier in compared to other tissue types, resulting in an overrepresenta-

tion of background pixels in the training set. This overrepresentation in combination with high

classification rates leads to impressive statistics. In order to avoid this effect, the mean value

of classification rates over all classes was calculated for each test, which is displayed by light
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Figure 7. Pw–weighted
MRI band

Figure 8. T2–weighted 
MRI band

Figure 9. CT–band

The intention of this statistical evaluation is twofold: on the one hand the generalization capa-

bility of the segmentation process needs to be investigated. On the other hand a major aspect

of this research is to find out whether the different texture analysis methods provide a better

solution of this task. Thus the results presented in this chapter refer to classification rates that

were achieved as classification results in step 1 of the segmentation pipeline.

The network design of the Kohonen Feature Map was optimized in previous work and has not

been changed during the investigations. The output layer of the network was sized in three di-

mensions with 6x6x6 neurons while the input layer was adapted to the respective length of the

feature extraction method. The training time was set to 40,000 cycles for the self–organization

and 160,000 cycles for additional LVQ3 training.

In order to test the generalization capability the leaving–one–out method was applied. Thus

for a single test the available ground truth data was split, while one of the n patient datasets

was selected as test data and the training was performed on the remaining n–1 datasets. Having

trained the Kohonen Feature Map on 10 patients the 11th was used as reference test data to

calculate the generalization capabilities. The results in relation to the involved texture analysis

method are given in Table 1 to Table 5. For the investigations the Haar–wavelet was used for

the wavelet transform.
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tient analysis is possible at all an investigation was made on the base of datasets of 11 clinical

studies. All of the tomographic datasets were acquired by a Siemens Magnetom with a double–

echo sequence and physical acquisition parameters of TR=1800 ms for the repetition time and

of  TE=15/90 ms for the echo time. These parameters provide a proton weighted image (Pw–

weighted) recorded at the first echo and a T2–weighted image recorded at the second echo. The

spatial resolution was approx. 1mm in all cases. In addition CT scans (Siemens Somatom)

were recorded and matched to the MRI data using the stereotactical frame method [17]. All

of the involved studies were investigated using histological probes resulting in a diagnosis for

brain tumor of type astrozytoma and grade II respectively. Thus these datasets are providing

comparable clinical cases and may be used for evaluation of the segmentation pipeline.

For the supervised classification ground truth data areas were set up for all of the specified

classes. E.g. in each of the involved patient datasets suitable slices were selected and rectangu-

lar training areas were defined for the classes considered (tumor, liquor, white matter, grey mat-

ter, bone, fat tissue and background). Patterns from these training areas were tagged with class

assignments and were stored in a database.

These samples contain a 3D environment for all bands (see examples in Figure 7 to 9) provid-

ing the texture analysis methods with the necessary texture window. Samples for the defined

training areas resulted in a database of approx. 70,000 samples used for training and evalua-

tion. The distribution of the samples over the patients is approx. homogenous.
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element B that has the same color for all pixels. The closing behavior is then similar to a binary

closing, as Figure 6 illustrates.

A BA !t B ( A !t B ) "o B

Figure 6. Superseding  closing

Furthermore, the definition of a sensitive closing operation with

( 38 )  sensitive transparent closing: A#s(G), t B $ ( A !t B ) "s(G), t B

( 39 )  sensitive superseding closing: A#s(G), o B $ ( A !t B ) "s(G), o B

protects all pixels in A which have common color–values with protection set G%F. Note that

in definitions 38 and 39 the erosion, not the dilation, was attributed with a sensitive operation

mode. The usefulness of this choice is easy to prove. The definitions of the relative versions

of 36 and 37 are straightforward

( 40 )  relative transparent closing: A#r(n), t B $ ( A !t B ) "r(n), t B

( 41 )  relative superseding closing: A#r(n), o B $ ( A !t B ) "r(n), o B

Again, the relativity which describes the matching percentage of the structuring element is as-

signed to the erosion.

6 Results

A major purpose of this work is to compare the suitability of different texture discrimination

methods applied to MRI tomographic data. In order to answer the question whether inter–pa-
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C $ A "r(0.6), o BA

B

D $ (( A "r(0.6), o B) "r(0.6), o B ) "r(0.6), o B

Figure 5. Relative erosion – a single and iterative application.

The matching condition must be fulfilled

for at least 60% of the structuring element B.

5.4.Opening
With the definitions in 5.2. and 5.3. one can combine erosion and dilation for a linked color–

coded morphological operation. Corresponding to the binary standard the aim is to smooth

regions. The operation is defined using a transparent erosion and transparent dilation and re-

quires a final intersection with the input image  A.

( 34 )  transparent opening: A &

t B $ ( ( A "t B ) !t B ) ' A

An interesting variation to Equation 34 can be derived if the involved erosion that detects the

region assigned to the reference pixel’s color is encoded in a relative way.

( 35 )  relative transparent opening: A &

r(n), t B $ ( ( A "r(n), t B ) !t B ) ' A

5.5.Closing
The counterpart in combining dilation and erosion defines the closing of a color–coded image

in its transparent and superseding versions

( 36 )  transparent closing: A#t B $ ( A !t B ) "t B

( 37 )  superseding closing: A#o B $ ( A !t B ) "o B

Note that in Equations 36 and 37 one must restrict the definition area from structuring element

B to achieve a proper working operation. Thus, one should require a monochrome structuring
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5.3.Erosion

Although erosion is considered the morphological opposite to dilation, this is not true in all

cases. The transparent version is defined as

C = A !t B:
C = A
for all a ( A and A(a) ) B(0) * {} do /* reference pixel matches a */
       if ( for all b ( B : A(a+b) ) B(b) * {} ) /* structuring element matches */

     C(a) = C(a) + B(0)
     else

     C(a) = C(a) \ B(0)

( 32 )  

transparent erosion:

Using the transparent erosion the image position that is covered by the reference pixel of the

structuring element will still keep its previous color.

If one works with color–coded operations, the shape that is encoded by an erosion operator

will soon be considered to be too strong or too precise. The matching condition of a structuring

element might be fulfilled only in a limited number of cases. Negative impacts on the desired

processing behavior can be reduced with a modified relative definition of the erosion.

C = A !r(n),t B; with n (]0;1]:
C = A
for all a ( A and A(a) ) B(0) * {} do     /* reference pixel matches */
     if ( for n  card B or more b ( B : A(a+b) ) B(b) * {} ) /* a defined 

   percentage of pixels matches at covered pixelposition? */
     C(a) = C(a) + B(0)

     else
     C(a) = C(a) \ B(0)

( 33 ) 

relative transparent erosion:

Relative transparent or superseding erosions enable us to achieve a more fuzzy description of

the matching condition, as for example: ”The structuring element B matches at position a, if

a  percentage n of the neighbored pixels match the corresponding pixels”. The percentage n

is given with respect to the cardinality of the structuring element B. If n is set to 1, the relative

erosion is equivalent to the definition of erosion in Equation 32 .
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must require that any operation can only add or supersede color values to the color of a pixel

a if the actual color of that pixel A(a) does not include any write–protected color value.

C = A "s(G),t B;  with G % F:
C = A
for all a ( A and A(a) ) B(0) * {} do /* reference pixel matches a */
    for all b ( B do /* for all points of B */

     if ( A(a+b) ) G = {} ) /* if the covered pixel is not protected */
C(a+b) = C(a+b)  + B(b)

( 30 ) 

sensitive transparent dilation:

The write–protected color values are elements of a color subspace G % F. One can define sen-

sitive instances of the dilation versions and denote them with an index s(G) that expresses the

sensitivity to a protected color space. The corresponding sensitive superseding dilation is de-

fined straightforwardly by replacing  the union C(a+b)=C(a+b)+B(b) with an explicit assignment

C(a+b)=B(b) with the color of the covering element. Figure 4 illustrates an example for a sensi-

tive superseding dilation on an image that contains one protected color.

A A !s(G), o BB G

Figure 4. Sensitive superseding dilation of image A

In some applications it might be desirable to include a certain condition, for example, the cor-

relation with a second image. In this case, both versions of dilation are extended in a way that

the condition is defined with image C.

D = A "c,t B | C:
D = A
for all a ( A and A(a) ) B(0) * {} do /* reference pixel matches a */
     for all b ( B do /* for all points of B */

    if ( B(b) ) C(a+b) * {} )    /* if b matches c=a+b */
D(a+b) = D(a+b) + B(b)

( 31 ) 

conditional transparent dilation:
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25 is fulfilled for all elements b of B and their corresponding covered pixels in A, then it is a

match between object B and object A :

B(b) ' A(a , b) * {} - b ( B ( 26 )   object B matches at pixel a to object A:

Operating with structuring element B on image A one can differ between two morphological

operation modes, either superseding (subindex o) or transparent (subindex t). The characteris-

tics of superseding operations are similar to those of binary operations. A pixel b with an as-

signed color B(b) will supersede the previous color A(a), if B covers a.. The contrary transpar-

ent operation will preserve the information that was set in image A.

( 27 )   transparent operation: C(a) $ A(a) . B(b)

5.2.Dilation

Similar to binary operations, the dilation is one of the two basic operations in color–coded

morphology. Contrary to binary operations the definitions for color–coded operations are gen-

erally defined with pseudo code.

For the superseding version of dilation, the color of structuring element B will replace a color

that was originally set at a covered position in A

C = A "o B:
C = A
for all a ( A and A(a) ) B(0) * {} do /* reference pixel of B matches a */
    for all b ( B do /* for all points of  B */

   C(a+b) = B(b)

( 28 )  

superseding dilation:

with associated definition area for structuring element B:
( 29 )  {B | B is object, B(i) $ B(j) - i, j ( B}

The definition of color–coded operations defines a powerful instrument for realizing semantic

sensitive processing if the operations themselves are sensitive. Following this concept, one
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5.1.Definition of Color–Coded Images

First of all an application–dependent color space F as the set containing all k possible color

values has to be defined.

( 21 )   color space: F $ {f1, f2, /// , fk}

Furthermore a color set  # of all possible subsets of  F shall be defined as

# $ {{ }, {f1}, /// , {fk}, {f1, f2}, /// /// , {f1, f2, /// , fk}} ( 22 )   color set:

Note that the empty set itself is an element of #. One can now define a color–coded image as

an object A, which is a subset A 0 ZN and an associated function $, which defines a projec-

tion from A to the set #:

( 23 )   color–coded image A / object A: A 0 ZN, $ : A 1 #

According to this definition, function $(a) assigns a color–code to each pixel a. The color–

code – simply named  color – is one element from the color set #. The color itself might consist

of an arbitrary number of color values f1, f2,... from the color space.

For a clear description of the impact of a structuring element B on image A one can define:

( 24 )   object B at pixel p covers pixel q in image A: 2b ( B with p , b $ q

The definition of a color–code for a pixel requires a specific understanding of matching.

Therefore, one can define a match between two object elements as

( 25 )   pixel a matches pixel b: A(a) ' B(b) * {}

In this case, the elements a and b have at least one common color value from the color space

in their colors. If object B is moved with its reference pixel B(0) to position a, and condition
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In Equation 19 !i,j is the Kronecker delta and clsk
r [x, y] defines the class assignment of classi-

fier k. The index r refers to a dataset of step 1 of the pipeline. The class assignment cls in the

united dataset (index v) can then be calculated by evaluating the maximum of the single votes

( 20 )   wcls[x, y] $ max
c

{wc[x, y]}

The class assignment from Equation 20 is the output of step 2 of the segmentation pipeline and

is based on the analysis of all contributing classifiers. This result can be considered to be much

more reliable than choosing one and disregarding the rest. Visual results of this step are given

in Section 6. They show that some misclassified pixels are removed after this step. Neverthe-

less there some still remain. Thus the next section will review a postprocessing method as the

final step of the pipeline.

5 Knowledge Based Post Processing

Classification results and combined results, as they are computed from step 1 and step 2 of the

segmentation pipeline provide, color–coded images that can be seen as a theme map of the in-

vestigated brain section. Since the processing of step 1 and 2 is pixel based, misclassifications

do occur and should be detected and eliminated on the base of the knowledge about a normal

brain anatomy.

It is essential to keep the importance of semantic sensitive processing in mind. If one takes a

tomographic image from the brain and submit it to a postprocessing analysis, one needs anoth-

er treatment of a liquor pixel adjacent to white– or grey matter than for a liquor pixel adjacent

to a background pixel. The latter case does not satisfy the simple semantic rule that all anatom-

ically possible neighbors of a background pixel must be either background or fat tissue.

In order to consider this situation the segmentation pipline incorporates specific morphologi-

cal operations for color–coded images that were presented in [1] and are briefly reviewed here.
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In this case the input of all K classified datasets is considered and pixels in the final vote are

only set, if all contributing classifiers vote for the same class assigment. This method provides

a highly reliable decision but obviously leaves a fair chance that manny pixels will be set to

an undefined state.

Widely spread and more promising than boolean operations is the technique of combining sev-

eral classifiers considering statistical weights to an collection [12]. This leads to the problem

of deciding how to determine the contributing weights. Some solutions employ multilayer per-

ceptrons which propagate acivities of ouput layer neurons to the collection. This technique can

not be applied to Kohonen Feature Maps, since no equivalent information is recorded. Thus

one can involve class dependent bias rates that can be calculated from statistical evaluation

of a classifier on ground truth data. Equation 18 gives a bias value pk
cls which defines the reli-

ability of classifier k with respect to the class cls

( 18 )   pk
cls $

RP
(RP , FN)

RP
(RP , FP)

where RP, FN, FP can be calculated as percentage values from the confusion matricies of clas-

sifier k:

�• RP (right–positive): classifier k recognized RP pixles of class cls correct.

�• FN (false–negativ): classifier k falsely rejected FN pixels of class cls

�• FP (false–positive): classifier k falsely assigned FP pixels

of other classes to class cls

The bias values from Equation 18 are used as weights in a modified majority voting as follows,

where a single vote wc for class c is  given by:

( 19 )   wc[x, y] $ 3
K

k$1
!c, clsk

r [x,y] pk
cls - c
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�• Cooccurrence Matrices Introduced by Haralick [8] 

describing second order statistics

�• Textural Energy According to Laws [13]

Convolution of the texture window

filter kernels

�• Implicit Feature Extraction Used in combination with KFM in [2]

4 Combination of Classification Results

The second step of the proposed segmentation pipeline in Figure 1 combines multiple classifi-

ers that are trained on the same task but use different methods. This technique is often referred

to as a network ensemble [12] even though the subjects which are to be combined are classifi-

cation results rather than the classifiers themselves. Furhtermore if we think of the objects we

realize that this step is independent of the classification method used (statistical classifier, neu-

ral network, ...) and can easily be applied to non–neural classifiers or mixed ensembles. Never-

theless most techniques require information about the statistical reliability of the involved

classifier. In order to solve the task, boolean operators, statistically weighted combinations

and fuzzy set techniques have been considered in this work. The latter hardly justify the com-

putational overhead with respect to the improvement of classification result and is not covered

in this paper.

A rather simple method to combine the classification results is to apply boolean operators.

Equation 17 gives a combination method involving the AND operator:

( 17 )   classv[x, y] $
4
4
5
6

7

class1
r[x, y] if class1

r[x, y] $ /// $ classK
r [x, y]

 
undefined else
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three spatial orientations. According to [15] it can be shown that these orientations correspond

to the maximum sensitivity of the human vision system.

Aside from the selectivity aspect, the suitability of the transform for feature extraction is

funded in its hierarchical representation. For derivation of features we decompose a texture

window W with iteration depth m. The features Fmi for a central pixel [x,y] are then taken

from the detail coefficients of the wavelet representation:

Fmi $ di
m,n,j | n $

x
m 8 j $

y
m ( 16 )   

If different frequency bands are biased with different weights one can dynamically control the

receptive behavior of the texture window at distinct resolutions. Due to the localization of the

wavelet transform in time and frequency space the derived features describe the texture at a

localized position in the signal. Features for a 3D texture window are calculated by accumulat-

ing detail coefficients over adjacent slices in a feature vector. Further accumulation steps in-

clude associated bands of the multi–modal image sequence.

3.2.Reference Methods

The previous section reviewed the wavelet transform and showed how texture features can be

derived from the wavelet representation. In order to investigate the efficiency of the wavelet

transform several traditional texture discriminating methods are also implemented in the pres-

ented pipeline. The reference methods are briefly shown here and can be found in the referred

literature.

�• Statistical Moments Initially proposed by Hu [10] and 

lately corrected by Reiss [16] 

describing first order statistics
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"
^ (0) $ 9

:

;:

"(x) dx $ 0 ( 10 )   

must hold for the basis wavelet and thus wavelet "m (x) works like a band–pass filter. The

corresponding scaling function #m (x) might be considered as a low–pass filter.

In order to apply the WT to multidimensional signals, tensor product extensions

V2
m $ Vm < Vm are involved. The 2D operation is then performed on func-

tion f (x, y) ( L2(%2) which bases on the 2D scaling function

#2(x, y) $ #(x) #(y) ( 11 )   

as the product of two 1D scaling functions. The decomposition of a 2D space into subspaces

is realized by using

( 12 )   V2
m;1 $ V2

m ! W2,1
m ! W2,2

m ! W2,3
m

where V2
m is given by the tensor product of two identical subspaces. The spaces

W2,1
m , W2,2

m , W2,3
m  are defined by the following 2D wavelet basis functions

"2,1
mnj (x, y) $ 2;m #(2;m x ; n) "(2;m y ; j) ( 13 )   

"2,2
mnj (x, y) $ 2;m "(2;m x ; n) #(2;m y ; j) ( 14 )   

"2,3
mnj (x, y) $ 2;m "(2;m x ; n) "(2;m y ; j) ( 15 )   

which discriminate vertical, horizontal and diagonal points of variation in the signal. Due to

the orthonormal design of the above basis functions a property is implied which is of high im-

portance for texture analysis: the orthogonal wavelet representation of f(x,y) is a decomposi-

tion of the signal into independent frequency channels, which allows a coarse selectivity of



C.Busch: ”Wavelet Based Texture Segmentation of Multi–Modal Tomographic Images” submitted to computer & graphics

10

9
:

0

|"^ ($)|2
$ d$ = : ( 5 )   

where "^ ($) is the fourier transform of the wavelet function.

The wavelet transform is in close relation to Mallats multi resolution analysis [15]: if a discrete

function f
~
(x) ( L2(%) is considered as an element of a vector space V0 and furthermore this

space V0 is decomposed into hierarchical subspaces Vm then f
~
(x) can be described by the con-

tribution from the single subspaces m with m = 1, 2, ... . The decomposition of space V0 is

computed iteratively, where

( 6 )   Vm;1 $ Vm ! Wm

defines the splitting of a space Vm;1 into the complementary subspaces Vm and Wm. The

space Wm is spanned using the set of orthonormal functions >"m,n | n ( Z? . According to

Equation 6 the space Vm is orthogonal to Wm and is spanned itself by a set of orthonormal scal-

ing functions >#m,n | n ( Z? which are derived in analogy to Equation 4 from a mother

function:

#m,n (x) $ 2;
m
2 # (2;m x ; n) ( 7 )   

Employing Equations 4 and 7 , the coefficients cm,n and dm,n of the wavelet representation can

be calculated as follows:

cm,n $ @ f (x) , #m,n A ( 8 )   

dm,n $ @ f (x) , "m,n A ( 9 )   

The detail coefficient describes the signal in different frequency bands. This stems from the

fact, that according to Equation 5 
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from compression, motion analysis and volume rendering to texture analysis [5] and [14]. A

good overview of the current activities can be found in [20].

One decided upon the WT for application on texture analysis since it provides unique charac-

teristics. In contrast to the fourier transform the WT is localized in the time domain as well

as in the frequency domain. Thus it allows to derive localized contributions of energy to the

textured signal in well separated frequency channels. This section will briefly investigate the

WT and its suitability for the segmentation approach. For a deeper understanding of the theory

the reader is referred to [4] and [15].

The wavelet transform L2(%) is an integral transform of the function f(x)

WT (a, b) $ 9
:

;:

f (x) "a,b dx ( 1 )   

where the orthogonal wavelet "a,b is employed as a basis function of the operation. It is derived

by a dilation a and a translation b from an unique mother wavelet. The discrete and dyadic

transform  WTD is realized using discrete factors

( 2 )   a $ 2m m ( Z

and

( 3 )   b $ n2m n, m ( Z

where m represents the depth of iteration. With

"m,n (x) $ 2;
m
2 " (2;m x ; n) ( 4 )   

one can define a family of wavelet basis functions. The following equation must hold for the

corresponding mother wavelet
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pipeline considers the coherence of neighbored slices in tomographic data. Thus where the

feature extraction method is not extended for a 3D window, features are accumulated in the

feature vector. Usually the data is analyzed as a multi–modal image and texture features from

windows on different bands of the dataset are contributing to a single feature vector, describing

the voxel position of the 3D dataset (see Figure 3).

Figure 3. Texture windows on multi–modal images

feature vector

texture windows

multi–modal MRI images

central pixel

Traditional work on texture description and analysis is driven by a statistical understanding

of texture [8]. Early approaches employed first and second order statistics. Others investigated

spectral properties or textural energy [13]. More recently texture analysis research has been

influenced by the research done on wavelet transforms [15]. The common interest is due to

the excellent properties of the transformation such as the localization of the representation and

the multi resolution analysis capabilities. So far promising results have been achieved, e.g. the

work of Chang [3]. In contrast to the work mentioned the focus of this paper is, to apply the

wavelet transformation as a feature extraction method on small sized texture windows. The

following sections will briefly review the wavelet transform.

3.1.Wavelet Transform

Recently respect for the wavelet transform (WT) has been growing in the computer graphics

community. Due to its excellent properties it has been involved in a variety of applications
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or statistically weighted combinations with respect to class–specific reliability of single clas-

sifiers  are appropriate for this task. This subject will be covered in Section 4.

While the second step might be optional, the third step incorporates an important postproces-

sing of the classified result. Its objective is to detect and eliminate single misclassifications

as isolated pixels or failures stemming from mixel effects at texture borders. This postproces-

sing requires a minimum size for a region to survive and thus provides a segmentation result

with homogenous and smoothed areas. From these areas contour lines can be taken for further

processing, e.g. generating object surfaces for 3D visualization. This postprocess filtering is

performed with morphological operators, which are extended for color–coded images in order

to perform a class–overlapping filtering and to incorporate basic anatomical knowledge. The

mathematical foundations are therefore reviewed in Section 5 and applied to the segmentation

problem of brain tissues.

3 Feature Extraction

The segmentation pipeline that was proposed in the previous section is based on texture ori-

ented analysis of tomographic images. As outlined in Section 1 the focus of this work is to

perform the desired segmentation on a very limited number of bands from a multi–modal to-

mographic dataset. Thus the approach balances the reduced amount of information with in-

formation extracted from the data itself. When less information is contributed from a number

of bands, more information must be derived by the feature extraction method by taking the

neighborhood of the respective pixel position into account. This corresponds to the common

understanding of texture as an attribute representing the spatial arrangement of the gray levels

of pixels in a region [20]. The region may be investigated by different texture analysis tech-

niques which will be the subject of this section. The investigated region is called texture win-

dow and will be configured in its size by the different techniques. In general the segmentation



C.Busch: ”Wavelet Based Texture Segmentation of Multi–Modal Tomographic Images” submitted to computer & graphics

6

tion reliability it can be shown that the class assignment step performed by the Kohonen Fea-

ture Map can be optimized in two efficient ways: first, due to the homogeneity of the data

vector to be classified there is a high probability that two subsequent vectors will result in  the

same class decision. Taking geometrical relations in the feature space into account one can

exclude most of the feature vectors from consideration. These geometrical aspects are realized

by precalculated hyperspheres around the cluster centroids in the feature space and by effec-

tive use of the triangle relation. Furthermore minimal distances can be approximated for prop-

er initial values of the search algorithm. These aspects which are implemented in the presented

segmentation pipeline are described in detail in [21]. It was shown that these modifications

of the search algorithm of the Kohonen Feature Map reduce the required computation time to

about 5%. Second, the calculation time can be further reduced by implementing the Kohonen

Feature Map on an appropriate supercomputer. Vector processors are adequate to handle the

kernel operations of the KFM since they require a small number of SIMD steps (Single

Instruction Multiple Data) for the processing of a feature vector. The implementation of the

time consuming texture classification step of the designed pipeline on an adequate supercom-

puter (Siemens–Fujitsu S400/40) with two vector processors, as compared to a medium sized

workstation (HP715/50), reduces the required processing time down to 2% with respect to the

kernel operations of the KFM.

The second step of the segmentation pipeline combines classification results which were cal-

culated for the same patient dataset to a single united one. The idea is, to apply an ensemble

of networks [12] to the problem. This approach offers two advantages: on the one hand the

discriminating capabilities of different feature extraction methods are combined into a single

result. On the other hand the reliability of the result is improved since a collection of classifiers

will reduce the risk of failures stemming from a specific feature extraction technique. Combin-

ing the different results Rk to a united result V requires a combination rule. Boolean operations
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using reliable training data [2]. Therefore large numbers of samples are required which are

defined by experts and stored in a database. This database then is used in the training phase

for the organization of the network. Figure 2 shows the two phases of the classification pro-

cess: In Phase 1 the KFM is organized on the data stored in the database. In Phase 2 the KFM

is applied to comparable image data performing a class assignment for each pixel. For a good

generalization capability of the network one must provide a large number of training samples

for the supervised organization. Thus a collection of image patterns that are attributed with

class assignments is stored in a database. Since the pipeline shall rely on a very limited number

of input bands, feature extraction methods are incorporated in the classification step in order

to enhance the discrimination of patterns. The pipeline includes the wavelet transform for fea-

ture extraction methods (see Section 3) as well as some classical methods. The suitability

within a tomographic application is investigated in Section 6 of this paper.

classifier

Figure 2. Texture classification according to the first step of the segmentation pipeline
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A major issue in the segmentation pipeline is the system performance, i. e. the time required

for feature extraction and  the class assignment of the respective feature vector in the applica-

tion phase. While computational expense of feature extraction is often balanced by classifica-
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interaction in the analysis process. This excludes semi–automatic techniques such as region–

growing.

Due to this constraint the segmentation is based on a fully automatic three–step pixelbased

approach, where no user interaction is necessary. The main steps of this process are shown in

Figure 1.

Figure 1. Three–step segmentation pipeline
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The different steps of the pipeline can be described as follows:

�• Step 1 integrates texture analysis techniques and an effective classifier scheme.

�• Step 2 applies an ensemble of classifiers to a given dataset, where each classi-

fier incorporates a single feature extraction method.

�• Step 3 performs a postprocessing of the combined result while controlling the

pixel–oriented approaches based on anatomical knowledge.

The first step of the pipeline analyzes the presented data and assigns of each pixel to a member

of the predefined class set. This step uses the Kohonen Feature Map (KFM) which has proven

its suitability to medical image analysis in a variety of studies [11]. Even though most applica-

tions use the KFM for cluster analysis of subspace mapping it can be shown that after self–or-

ganization of the network an additional learning vector quantization step [11] provides a su-

pervised classifier. This step performs a class assignment to each neuron which is realized
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spin density (pw weighted image band) characteristics of the tissue. In order to compensate

for the lack of information compared to multiple input bands, the acquired images are analyzed

using texture analysis techniques for proper discrimination of tissue types.

Section 2 presents a segmentation pipeline which separates an MRI dataset into seven differ-

ent tissue types. While a Kohonen Feature Map is used as a classification scheme throughout

this work the wavelet transform as a feature extraction method is investigated in Section 3.

Section 4 will consider ensembles of classifiers and Section 5 reviews a postprocessing meth-

od for color–coded images. Section 6 will show the generalizing classification capabilities of

the wavelet transform as compared to traditional texture describing methods on a test set of

11 comparable clinical studies.

2 Segmentation Pipeline

This paper focuses on the automatic analysis of tomographic data acquired by MRI scanners.

The intention is to support the diagnosis by computer based segmentation of different tissue

types, such as the classes tumor, liquor (cerebospinal fluid), white matter, grey matter, bone,

fat tissue and background. For this purpose a pipeline was created that localizes pathological

tissue (tumor) in a given dataset. As a result the process provides a color–coded dataset in

which each pixel is classified as one of the classes defined previously.

An  important aspect for the design of this pipeline is the integration of the segmentation pro-

cess into a teleconsultation system [7]. In that case the segmentation process provides remote

image analysis within a network of user groups linked by ISDN lines to a central super com-

puter. In this scenario the site which acquires the image data is locally separated from the site

where the data is analyzed. This implies a specific prerequisite for the design of the image pro-

cessing pipeline: Due to offline execution at a locally separated supercomputer there is no user
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1 Introduction

Segmentation techniques of multi–modal tomographic data is an increasingly important step

in medical imaging. On the one hand magnetic resonance imaging (MRI) supplies high quality

tomographic data characterizing specific tissue types with varying physical acquisition pa-

rameters. On the other hand computer tomography data (CT) can be matched with MRI data

using algorithm such as [17] in order to provide multi–modal image information. The classifi-

cation of tissue types in these datasets contributes to the diagnosis process in the field of volu-

metric rendering as well as surface reconstruction; both rely on a robust presegmentation of

the initial data. This is required in order to compute a high quality 3D visualization of patho-

logical tissue that might be used for irradiation or surgery planning. Furthermore, volume

measurements are essential in order to control, for example, brain tumor regression in correla-

tion with irradiation treatment [18].

Applying image analysis techniques to multi–modal images often involves interactive or

semiautomatic techniques [9]. Nevertheless there are a number of automatic segmentation ap-

proaches which are applying multi–dimensional image analysis techniques especially to MRI

data [19], [6]. Common drawbacks are either the requirement for a large number of variations

as input data for the classification method or overlapping clusters in the feature space. Al-

though MRI could provide a high number of bands of multivariate nature these recording se-

quences are not suitable for clinical use since the necessarily long acquisition times are too

stressful for a patient.

The overall goal of this work is to reduce the amount of data that needs to be acquired. In other

words the presented segmentation pipeline aims at a reduction of the necessary input informa-

tion to those datasets used in everyday clinical studies, where double–echo sequences of MRI

scans record images that are describing spin–spin relaxation (T2 weighted image band) and
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Abstract
This paper presents a segmentation pipeline for computer–based automatic analysis of

multi–modal tomographic images. It is a computer based support for the localization of

pathological tissues such as brain tumors. The segmentation pipeline of the presented

approach includes texture analysis, classification with a modified Kohonen Feature

Map, a collection of classifiers and knowledge based morphological  postprocessing.

Furthermore this paper presents a statistical investigation that compares the wavelet

transform to classical texture analysis methods. Patient data which was acquired using

magnetic resonance imaging (MRI) and computer tomography (CT) is used for this in-

vestigation.
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