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Abstract: The vulnerability of face recognition systems against so-called morphing attacks has been revealed in the past years.
Recently, different kinds of morphing attack detection approaches have been proposed. However, the vast majority of published
results has been obtained from rather constrained experimental setups. In particular, most investigations do not consider variations
in morphing techniques, image sources, and image post-processing. Hence, reported performance rates can not be maintained in
realistic scenarios, as the NIST FRVT MORPH performance evaluation showed. In this work, existing algorithms are benchmarked
on a new, more realistic database. This database consists of two different data sets, from which morphs were created using four
different morphing algorithms. In addition, the database contains four different post-processings (including print-scan transforma-
tion and JPEG2000 compression), which simulate the processing pipeline of the creation of an electronic travel document. Further,
a new morphing attack detection method based on a fusion of different configurations of Multi-scale Block Local Binary Patterns
(MB-LBP) on an image divided into multiple cells is presented. MB-LBP features are extracted from face images using various
block sizes and cell divisions. For each configuration SVM classifiers are separately trained to distinguish between morphed and
bona fide face images. The proposed score-level fusion of a maximum number of 18 different configurations is shown to sig-
nificantly improve the robustness of the resulting morphing attack detection scheme, yielding an average performance between
2.26% and 8.52% in terms of Detection Equal Error Rate (D-EER), depending on the applied post-processing.

1 Introduction

Image manipulation techniques can be applied to substantially
change the appearance of face images and hence negatively affect
the recognition accuracy and security of face recognition systems.
Face alteration methods include replacement or reenactment [1, 2],
which are frequently referred to as “face swapping” or “deep-fakes”,
retouching [3, 4] as well as morphing [5, 6]. Morphing techniques
can be used to create artificial face images that resemble the biomet-
ric information of two (or more) subjects in the image and feature
domain. Usually, the morphing process comprises the definition
of corresponding landmarks, averaging, triangulation, warping, and
alpha-blending [5]. Alternatively, morphs might as well be created
using Generative Adversarial Networks (GANs) [7]. An example
of a morphed facial image is shown in Fig. 1b. With high prob-
ability, the morphed facial image is successfully verified against
probe samples from both subjects contributing to the morph using
state-of-the-art Face Recognition Systems (FRS). This means that
if a morphed facial image is somehow stored as a reference in
the database of a FRS or in the chip of an electronic travel doc-
ument, both subjects involved can successfully be verified against
this manipulated reference. Morphed facial images thus pose a seri-
ous threat to FRSs as the basic principle of biometrics, i.e. the
unambiguous link between biometric data and the subject, is broken.

In 2014, Ferrara et al. [37] were the first to thoroughly investi-
gate the vulnerability of a commercial FRS against face morphing
attacks. So far, a considerable amount of morphing attack detec-
tion mechanisms has been published. For a comprehensive survey
the reader is referred to [5]. Proposed approaches can be catego-
rized according to the morphing attack detection scenario. In the
no-reference morphing attack detection scenario, the detector pro-
cesses a single image, e.g. an image that is presented in a passport
application procedure (this scenario is also referred to as single

(a) Subject 1 (b) Morph (c) Subject 2

Fig. 1: Example for a morphed face image (b) of subject 1 (a) and
subject 2 (c); the morph was created using FantaMorph.

image morphing attack detection or forensic morphing attack detec-
tion). On the contrary, in the differential morphing attack detection
scenario, a trusted live capture from an authentication attempt serves
as additional source of information for the morph detector, e.g.
during authentication at an Automatic Border Control (ABC) gate
(this scenario is also referred to as image pair-based morphing
attack detection). Note that all information extracted by no-reference
morph detectors might as well be leveraged within this scenario [17].

In this work, focus is put on the more challenging no-
reference scenario. A comprehensive evaluation on two different
face databases using four morphing algorithms and four post-
processing methods is conducted. It is shown that a fusion of mul-
tiple configurations of Multi-scale Block LBP (MB-LBP) improves
the performance as well as the robustness of the morphing attack
detection system. Further, the proposed fusion-based scheme that
combines the complementary information extracted from various
scales outperforms diverse published approaches. Moreover, as
opposed to existing works, it is shown that morphing attack detection
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Table 1 Overview of most relevant no-reference face morphing attack detection algorithms (adapted from [5]).

Ref. Approach Category Morphing method Source face database Post-processing Remarks
[8] BSIF with SVM texture descriptors GIMP/GAP in-house – –
[9] BSIF with SVM texture descriptors GIMP/GAP in-house print and scan fixed database of [8]
[10] Multi-channel-LBP with Pro-CRC texture descriptors OpenCV FRGCv2 print and scan –
[11] Multi-channel-LBP with SRKDA texture descriptors [12] [12] print and scan –
[13] WLMP with SVM texture descriptors Snapchat in-house – –

[14, 15] ULBP and RIPS with KNN texture descriptors [16] Utrecht – –

[17] BSIF with SVM texture descriptors
triangulation
+ blending

FRGCv2 – –

[18]
Score-level fusion of general
purpose image descriptors

texture descriptors
triangulation
+ blending

FRGCv2 – –

[19] HOG with SVM texture descriptors
triangulation
+ blending

FRGCv2,
FERET, ARface

–
cross-database

performance evaluation

[20] LBP with SVM texture descriptors
triangulation
+ blending

FRGCv2, FERET –
cross-database

performance evaluation
[7] LBP with SVM texture descriptors MorGan [7] CelebA – –

[21] High-Dim. LBP with SVM texture descriptors
triangulation

+ blending + swapping
Multi-PIE – –

[22] Image degradation digital forensics
triangulation

+ blending (+ swapping)
in-house, Utrecht – –

[23–25] PRNU analysis digital forensics
triangulation
+ blending

FRGCv2
hist. equalization,

scaling, sharpening
–

[26] PRNU analysis digital forensics
triangulation
+ blending
MorGan [7]

CelebA – –

[27] SPN analysis digital forensics
triangulation

+ blending (+ swapping)
Utrecht, FEI – –

[16]
Double-compression
artefacts analysis

digital forensics
triangulation

+ blending (+ swapping)
Utrecht, FEI – –

[28]
Double-compression
artefacts analysis

digital forensics [16] Utrecht, FEI – –

[29] Reflection analysis digital forensics
triangulation

+ blending (+ swapping)
in-house – –

[12]
Luminance component and
steerable pyramid with ProCRC

digital forensics
triangulation

+ blending (+ swapping)
[10] extended print and scan –

[30] Image quality features with SVM digital forensics GAN generated Morphs VidTIMIT – –
[31] VGG19 and AlexNet with ProCRC deep learning [9] in-house print and scan –

[32] VGG19, GoogLeNet, AlexNet deep learning
triangulation

+ blending (+ swapping)
in-house – –

[33] VGG19 deep learning
triangulation

+ blending (+ swapping)

BU-4DFE, CFD,
FEI, FERET,
PUT, scFace,

Utrecht, in-house

motion blur,
Gaussian blur,

salt-and-pepper noise,
Gaussian noise

trained on all
combinations

(no unseen attack classes)

[34]
OpenFace NN4.SMALL2 and
LBP with SVM

deep learning and
texture descriptors

[35] CelebA –
candidate selection
presented in [35]

[36] VGG19 with SVM deep learning
triangulation

+ blending (+ swapping)
FRGCv2, FERET,
ARface, Biometix

print and scan –

remains a challenging task in real-world scenarios where the image
source and/or the algorithm used to morph face images is unknown
to the detection system.

The remainder of the manuscript is organized as follows: In
Sec. 2, the related work is briefly revisited. Subsequently, the used
image databases are summarized in Sec. 3. In Sec. 4, the proposed
system is described in detail. An in-depth evaluation is presented in
Sec. 5. Finally, a conclusion is given in Sec. 6.

2 Related Work

In general, no-reference face morphing attack detectors can be
divided into three algorithm classes which utilize either (1) texture
descriptors, (2) digital forensics, or (3) deep learning. Most relevant
published approaches and their properties are listed in Table 1.

During the morphing process various artefacts are created which
can be detected by analyzing the texture. Due to the averaging of
two images, the resulting morph is smoothed, e.g. the skin textures
will loose their sharpness. Furthermore, ghost artefacts or half-shade
effects occur if the two morphed images are not aligned correctly
and if there are too few or incorrectly positioned landmarks. Espe-
cially in the area of the pupils and the nostrils these artefacts occur
more frequently. Other artefacts detectable by texture descriptors
are distorted corners and offset image areas. In several publications

the use of common texture descriptors, e.g. Local Binary Patterns
(LBP) [38] or Binarized Statistical Image Features (BSIF) [39], has
already been demonstrated [7–9, 17, 20]. An extension of these algo-
rithms to several color channels [10, 11] or higher dimensions [21]
can lead to further improvements. Other texture descriptors such as
Unified Local Binary Patterns (ULBP) [14, 15] or Weighted Local
Magnitude Patterns (WLMP) [13] have also been tested.

The distortion and blending during the morphing process has an
influence on the high-frequency information of the image. These
changes can be analyzed by image forensics-based detection meth-
ods. For example, it has been shown that morphs can be detected by
analysing Photo Response Non-Uniformity (PRNU) [23–26] or sen-
sor pattern noise (SPN) [27]. Moreover, the quality of the images is
reduced by editing and saving them in the morphing process. Under
the assumption that the quality of morphed images is always lower
than those of bona fide images, image quality can be used for morph
detection. This can be done by either analyzing intentional degrada-
tion of the image in question [22] or by using several quality features
in combination with a classifier [30]. Under the assumption that the
images are stored in a lossy compression format before and after
morphing, it is possible to detect morphs by analyzing double com-
pression artefacts [16, 28]. Furthermore, the images can be examined
for inconsistencies, for example for non-natural lighting conditions
or color values [29].
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Fig. 2: Examples for a morphed face images from all four algorithms (resized). From left to right: Subject 1, FaceFusion morph, FaceMorpher
morph, OpenCV morph, UBO-Morpher morph, and Subject 2

Table 2 Number of subjects, bona fide and morphed face images
(per morphing algorithm) of used datasets. “F” and “M” indicate
female and male subjects, respectively.

Database Subjects Face images
bona fide morphed

FRGCv2 533 (231 F, 302 M) 1441 964
FERET 529 (200 F, 329 M) 622 529

The third class of no-reference algorithms are based on deep
learning. Deep learning-based feature extractors offer the advantage
that they can theoretically learn to detect any artefact present in the
training set. This, however, carries the risk of over-fitting to arte-
facts, which only occur with the morph algorithms used for training
and are therefore not generally valid. One possibility is the training
or transfer learning of a network for the detection of morphs [32, 33].
Another possibility is the use of pre-trained neural networks for fea-
ture extraction in combination with a classifier (e.g. SVM) [31, 36].
Deep features can also be combined with other features (e.g. LBP)
[34].

While the majority of morph detection approaches report practi-
cal detection error rates, these are commonly evaluated on a dataset
of bona fide and morphed face images which are extracted from a
single (in-house) face database and created by a single morphing
algorithm. It was shown, that variations in dataset [19], morphing
process, and post-processing (e.g. print and scan [9]) might nega-
tively influence the performance of the morph detection algorithms.
This has also been confirmed in the Face Recognition Vendor Test
(FRVT) MORPH conducted by the National Institute of Technology
(NIST) [40]. In [18] a fusion of multiple algorithms was proposed,
as it might improve the detection performance of no-reference algo-
rithms. Even the fusion of different configurations of the same
algorithm were found to be beneficial.

3 Database

The results of this work were obtained based on subsets of the
FRGCv2 [41] and FERET [42] face image databases. From these
databases, potential reference images meeting International Civil
Aviation Organization (ICAO) passport photo quality standards [43]
are selected. From the pre-selected images, image pairs are created
for the morphing process. Where possible, different images are used
for morphing and as bona fide samples. However, for some subjects
there are not enough samples, so the same image is used in both sub-
sets (morphed and bona fide). The number of used subjects, bona
fide images as well as the number of created morphs are given in
Table 2.

3.1 Morphing

Different morphing algorithms produce morphs with different arte-
facts. For a comprehensive evaluation a database with different
morphing algorithms is therefore necessary to ensure that the morph
attack detection algorithms have not stiffened to algorithm-specific
artefacts. For this purpose, four morphing algorithms were used to

ensure a large variation of morphs, examples are shown in Fig. 2
with equal contribution of both subjects:

1. FaceFusion∗, a proprietary morphing algorithm. Due to the inac-
cessible source code it is not possible to determine in which way the
morphs are generated. It can be seen, that after the morphing process
parts of the first subject are blended over the morph to hide artefacts
(eyes, nostrils, outer facial region). The created morphs have a high
quality and low to no visible artefacts.
2. FaceMorpher†, an open-source implementation using Python.
In the used version the algorithm applies STASM for landmark
detection. Delaunay triangles are formed from the landmarks, which
are distorted and blended. The area outside the landmarks is aver-
aged. The generated morphs show strong artefacts in particular in
the area of neck and hair.
3. OpenCV, a self-made morphing algorithm based on the tuto-
rial "Face Morph Using OpenCV"‡. This algorithm works similar
to FaceMorpher. Important differences between the algorithms are
that for landmark recognition Dlib is used instead of STASM and
that for this algorithm landmarks are positioned at the edge of the
image, which are also used to create the morphs. Thus, in contrast
to FaceMorpher, the edge does not consist of an averaged image, but
like the rest of the image, of morphed triangles. However, also in
this version strong artefacts outside the facial area can be observed,
which is mainly due to missing landmarks.
4. UBO-Morpher, the morphing tool of University of Bologna, as
used e.g. in [44]. This algorithm receives two input images as well
as the corresponding landmarks. Dlib landmarks were used for this
morphing tool. The morphs are generated by triangulation, averag-
ing and blending. To avoid the artefacts in the area outside the face,
the morphed face is copied to the background of one of the original
images. Even if the colors are adjusted, visible edges may appear at
the transitions.

In order to be able to conduct a fair benchmark in our experiments,
the same combination of morphed face images was created for each
of the listed algorithms.

3.2 Post-processing

In addition to the considered ICAO compliance, various post-
processings of the images must also be taken into account, since
images of the database aim at imitating real-world scenario of
the application process of an electronic travel document. In many
countries the images are down-scaled, e.g. to 360×480 pixels, and
compressed, e.g. to 15kB using JPEG2000, prior to storing them
on the chip of an electronic travel document, e.g. an ePassport. In
addition, the images can be handed over in printed form by the appli-
cant. It can be assumed that morphs are more easier to be recognized

∗www.wearemoment.com/FaceFusion/
†github.com/alyssaq/face_morpher
‡www.learnopencv.com/face-morph-using-opencv-cpp-

python/
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(a) Resized (b) JPEG2000 (c) Print/Scan (d) Print/Scan and JPEG2000

Fig. 3: Comparison of different post-processings (FaceFusion). Zoomed in to reveal artefacts and noise more clearly.

in unprocessed images and that each post-processing step increases
the difficulty of reliable detection. In order to cover the realistic
scenarios, the following post-processings have been applied:

1. Resizing (RS): The resolution of the images is reduced to the
minimum inter-eye distance (90px) required by the ICAO guidelines
for electronic travel documents [43]. This post-processing corre-
sponds to the scenario that an image is submitted digitally by the
applicant. An example is shown in Fig. 3a. This post-processing
is applied in advance to all subsequent post-processings described
below.
2. JPEG2000 Compression (J2): A wavelet-based image compres-
sion method that is recommended for electronic travel documents
[45]. The setting is selected in a way that a target file size of 15KB
is achieved. This post-processing corresponds to the scenario that a
digitally submitted image is stored in the chip of the electronic travel
document. An example is shown in Fig. 3b.
3. Printing and Scanning (PS): The images are first printed with a
high quality laser printer (Fujifilm Frontier 5700R Minlab on Fuji-
color Crystal Archive Papier Supreme HD Lustre photo paper) and
then scanned with a premium flatbed scanner (Epson DS-50000)
with 300 dpi. A dust and scratch filter is then applied in order to
reduce image noise. This post-processing corresponds to the sce-
nario that an analog image is submitted with the electronic travel
document application. An example is shown in Fig. 3c.
4. Printing, Scanning and JPEG2000 Compression (PS-J2): A
combination of the previous post-processings. The images are first
printed and scanned and then compressed using JPEG2000. This
post-processing corresponds to the scenario that a analog submit-
ted image is stored in the chip of the electronic travel document. An
example is shown in Fig. 3d.

3.3 Validation of Attack Potential

To assure the significance of the following experiments, the attack
potential of the created databases is evaluated in a first step. For this
purpose, comparison scores for genuine and impostor comparisons,
as well as for morphing attacks are determined and the Mated Morph
Presentation Match Rate (MMPMR) and the Relative Morph Match
Rate (RMMR) defined in [46] is estimated. The FRGCv2 provides
probe images showing a significantly higher variance (and there-
fore higher realism) compared to the probe images contained in the
FERET database, thus the validation of the attack potential is limited
to the FRGCv2 database. Due to the lower variance of the sample
images, the comparisons of the FERET database results in higher
comparison scores for genuine and morph attack comparisons, thus
the results obtained on FRGCv2 can be considered as a lower limit
for the attack potential. The comparison scores were generated using
a Commercial-Of-The-Shelf (COTS) FRS. The resulting probabil-
ity density functions are depicted in Fig. 4. In most publications,
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(a) 25/75 Morphs
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Fig. 4: Probability Density Functions (PDFs) of comparison scores
of genuine, impostor, and morphing attacks for symmetrical and
asymmetrical morphs. τ depicts the estimated threshold for a FMR
of 0.1%.

Table 3 Vulnerability assessment of COTS FRS.

MMPMR/RMMR in %
α FaceFusion FaceMorpher OpenCV UBO-Morpher

0.25 18.8 8.4 9.8 3.0

0.5 79.4 60.1 62.8 81.5

databases with symmetric morphs are used. This means that both
subjects are equally contributing to the creation of the morph. How-
ever, it is also suggested, e.g. in [44], to assign a lower weight to one
subject, in order to increase the chances in the case of a manual con-
trol with this subject. For this reason, in addition to the probability
density functions of symmetrical morphs in Fig. 4b, the distribu-
tions of asymmetrical morphs with a weighting of 25% and 75%
(α = 0.25) are shown in Fig. 4a, the corresponding MMPMR and
RMMR are listed in Table 3. Since the FRS maintains a zero FNMR
at the considered FMR of 0.1% the MMPMR is equal to the RMMR.
However, it is evident that the asymmetric morphs, regardless of the
applied morphing algorithm, have no attack potential for the used
FRS. This behaviour is reinforced by the realistic variance of the
probe images used. As a consequence, only symmetrical morphs are
considered in this paper.

4 Proposed System

The proposed system, which is depicted in Fig. 5, comprises three
key modules, (1) MB-LBP extraction, (2) cell division and (3) train-
ing and score-level fusion; in the following subsections, all modules
are described in detail. To avoid algorithm overfitting on avoidable
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Fig. 5: Overview of the proposed multiple configuration MB-LBP fusion approach with division into multiple cells to detect morphed facial
images. k is the parameter for the MB-LBP block size and c the parameter for the cell division.

artefacts, e.g. ghost-artefacts in hair regions, the image is cropped
to a size of 320×320 pixels using predefined offsets, whereby the
image area showing the face is cut out. Finally, the cropped face part
is converted to a grayscale image.

4.1 Multi-scale Block LBP

LBP has been found to be a powerful feature for texture classifica-
tion. Specifically, LBP has been shown to be suitable for detecting
morphed face images in no-reference scenarios [18]. The distortions
of the images introduced by the morphing process are changing the
texture of the images in a way, that can be detected in an LBP-
histogram. Further, the images are averaged during the blending,
which smooths the resulting morph, leading to less sharp edges,
which are reflected in an LBP-histogram, too. In addition, the mor-
phing process might introduce minor artefacts to the image [46]. As
LBP is designed for the representation of surface properties, these
artefacts can be represented in the LBP-histogram as well and can
be utilized to detect morphed face images.

The original LBP operator labels the pixels of an image by thresh-
olding the 3×3-neighborhood of each pixel with the center value
and considering the result as a binary string or a decimal number.
Then the histogram of extracted LBP values can be used as a tex-
ture descriptor. MB-LBP [47] is an extension to the basic LBP, with
respect to neighborhoods of different sizes. In MB-LBP, the com-
parison operator between single pixels in LBP is replaced with the
comparison between average pixel intensities of sub-regions. Each
sub-region is a square block containing neighboring pixels. In each
sub-region, the average sum of pixel intensities is computed. These
average sums are then thresholded by that of the center block. The
whole filter is composed of 9 blocks (center block and 8 neighbour-
ing blocks) of size (2k+1)×(2k+1) pixels. If a higher value for k is
selected, details are lost while robustness increases [47]. An exam-
ple of the basic LBP and the MB-LBP operator is shown in Fig. 6. In
order to be able to compute the LBP blocks in the peripheral regions,
padding border lines and columns are added to the image in advance
which replicates the outer pixel values.

4.2 MB-LBP feature extraction over multiple cells

Even if the performance of LBP in constrained scenarios is promis-
ing, the detection performance of LBP highly degrades when the
face images are post-processed, e.g. by printing and scanning. Fur-
ther, it was observed, that smaller blocks show a higher performance
on single databases, but larger blocks are more robust in a cross-
database analysis [19]. Scherhag et al. [18] have shown that a fusion
of two LBP configurations might lead to an increased performance
and robustness of the algorithm.

After the computation of the MB-LBP values, the resulting image
is divided into c× c cells. For each cell a histogram is calculated,
the individual histograms are concatenated to a longer MB-LBP
feature vector. As c increases, so does the number of concatenated
histograms and thus the size of the feature vector. With that comes
the benefit of retaining more local information.

5
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Fig. 6: The basic LBP Operator and the MB-LBP operator with k=2.

Thus, at feature-extraction, the MB-LBP feature extraction is
applied to the post-processed image in different configurations. The
configurations consist of the possible combinations resulting from
the values for k and c. Values from 0 to 5 are selected for k, since
too much information is lost with even larger values. The picture
is divided into a maximum of 3×3 cells (c = {1, 2, 3}), otherwise
the ratio between the patch size and the cell size is disproportionate.
This results in 6× 3 = 18 possible configurations.

4.3 Training and score-level fusion

To distinguish between bona fide and morphed face images one
support vector machine (SVM) is trained per configurations of k
and c. The default hyper parameters of the scikit-learn implemen-
tation of linear kernel SVM∗ are used (C=1.0, gamma=(n_features
× variance)−1). For a given face image each SVM generates a
normalized attack detection score in the range [0,1].

In the fusion stage a sum-rule score-level fusion is applied to
the scores of the different classifiers. The number of fused algo-
rithms ranges from 1 (no fusion) to the total number of MB-LBP
configurations and cell divisions, i.e. 18. Considering all possible
combinations, this results in a quantity of

18∑
n=1

(
18

n

)
= 262, 143

fusions. Despite this large amount of possible MB-LBP configu-
rations, it is expected that the maximum number of configurations
reveals competitive detection performance, as will be shown in
experiments.

5 Experiments

In the following section, the experimental setup as well as the evalu-
ation of the experiments are described, including a discussion of the
observed results. Performance evaluations are conducted based on
the database described in Sec. 3.

∗https://scikit-learn.org/stable/modules/svm.html
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Fig. 7: Box plot over the distribution of D-EERs of all possible fusion combinations of a fixed number of algorithms.

Table 4 Average D-EER for different numbers of fused MB-LBP configurations.

Number of fused MB-LBP configurations
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18

D-EER 29.5 25.3 23.1 21.5 20.4 19.5 18.8 18.2 17.8 17.3 17.0 16.7 16.5 16.3 16.1 15.8 15.5 15.3

5.1 Morph detection performance evaluation

For the performance evaluation of the described algorithm, the SVM
classifiers are each trained on one post-processing and one mor-
phing algorithm at a time using FERET database. The evaluation
is performed on FRGCv2 database and all other morphing algo-
rithms, resulting in 12 combinations per post-processing and 48
combinations in total.

The performance of the detection algorithms is reported using the
Detection Equal Error Rate (D-EER), i.e. the operating point where
the proportion of attack presentations incorrectly classified as bona
fide presentations (APCER) is as high as the proportion of bona fide
presentations incorrectly classified as presentation attack (BPCER).
For APCER and BPCER the definitions of ISO IEC 30107-3 [48]
are used:

Table 5 D-EER (in %) of single MB-LBP algorithms and the fused approach. The D-EER of an algorithm trained on all available attack types is highlighted in italic.

Train Test Best Single Detection-Alg. Performance Fused Detection-Alg. Performance
Database Morph-Alg. Database Morph-Alg. Configuration One Morph-Alg. All Morph-Alg. One Morph-Alg. All Morph-Alg.

FERET

FaceFusion

FRGC

FaceMorpher k: 1 - c: 3 6.3 31.0 7.9

10.8

OpenCV k: 1 - c: 2 19.4 35.7 15.3

UBO-Morpher k: 1 - c: 3 15.6 31.0 12.0

FaceMorpher

FaceFusion k: 1 - c: 3 20.5 31.0 17.8

OpenCV k: 0 - c: 3 8.1 28.0 14.5

UBO-Morpher k: 0 - c: 3 9.0 28.0 11.0

OpenCV

FaceFusion k: 1 - c: 3 19.9 31.0 14.3

FaceMorpher k: 0 - c: 1 0.3 22.0 6.3

UBO-Morpher k: 0 - c: 3 11.2 28.0 10.0

UBO-Morpher

FaceFusion k: 0 - c: 2 15.1 32.3 9.4

FaceMorpher k: 0 - c: 3 1.9 28.0 2.2

OpenCV k: 0 - c: 2 11.4 32.3 9.1

All

FaceFusion - - - 8.1

5.7
FaceMorpher - - - 1.1

OpenCV - - - 6.7

UBO-Morpher - - - 6.9
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Table 6 Morph-detection performance in terms of D-EER (in %) of state-of-the-art algorithms.
Train: FaceFusion. Test: Train: FaceMorpher. Test: Train: OpenCV. Test: Train: UBO-Morpher. Test:

Algorithm Post-Processing FaceMorpher OpenCV UBO-Morpher FaceFusion OpenCV UBO-Morpher FaceFusion FaceMorpher UBO-Morpher FaceFusion FaceMorpher OpenCV Average

BSIF

RS 25.21 21.77 23.67 26.13 16.79 20.33 22.84 12.22 19.2 21.66 16.48 16.27 20.21
J2 26.44 26.64 20.64 17.09 18.07 18.48 18.48 18.69 18.89 17.4 21.56 23.46 20.49
PS 16.89 12.01 14.84 10.68 11.19 12.78 12.22 15.25 14.53 10.99 12.99 10.99 12.95
PS-J2 25.31 24.18 20.74 22.54 24.08 24.28 21.87 23.46 23.97 18.07 23.36 21.36 22.77

BSIF 4×4

RS 16.79 14.73 15.86 20.43 12.22 15.04 17.66 8.42 13.91 17.97 11.6 12.78 14.78
J2 26.13 25.21 19.1 17.76 17.66 17.2 17.09 19.4 17.3 16.58 21.56 22.28 19.77
PS 14.01 12.58 13.6 12.12 12.22 12.88 12.99 14.63 14.01 13.3 14.01 12.88 13.27
PS-J2 25.21 22.54 21.46 22.95 24.08 23.15 22.84 24.59 21.87 19.92 25.31 22.28 23.02

ArcFace

RS 30.7 30.8 31.83 33.93 29.57 35.47 32.34 29.16 32.8 32.6 32.49 31.42 31.93
J2 31.42 30.29 31.93 34.34 29.67 35.58 32.91 29.16 33.62 33.01 32.34 30.9 32.10
PS 32.49 32.03 33.11 34.45 30.29 36.91 33.52 28.44 34.34 31.83 31.73 30.6 32.48
PS-J2 32.91 31.42 33.52 35.27 30.08 37.42 32.7 28.03 34.14 32.14 32.6 30.08 32.53

LBP

RS 16.99 19.1 20.33 27.26 18.38 20.53 26.23 10.78 19.92 24.69 12.22 17.3 19.48
J2 32.34 34.45 25.72 23.67 23.05 22.95 24.59 26.44 24.08 21.97 27.46 30.18 26.41
PS 17.3 17.51 19.3 15.97 15.55 16.99 17.3 16.89 17.86 15.45 14.22 14.94 16.61
PS-J2 29.47 27.52 24.79 26.23 26.75 26.75 25 26.44 26.03 22.95 27.93 25.92 26.32

LBP 4×4

RS 10.88 14.12 16.38 23.56 14.63 17.86 21.05 7.44 16.48 19.92 8.62 13.81 15.40
J2 30.49 31.42 24.08 20.43 22.18 20.64 22.84 24.38 21.97 21.97 26.85 29.26 24.71
PS 15.66 15.97 17.09 15.35 14.42 15.14 17.09 15.45 15.86 15.97 12.99 14.73 15.48
PS-J2 28.44 27.16 24.79 25.41 25.72 24.79 24.38 25.92 24.08 22.54 26.23 23.25 25.23

MB-LBP

RS 2.05 10.88 9.45 2.72 16.27 13.19 8.73 13.19 14.01 6.21 2.93 12.01 9.30
J2 2.26 17.30 14.63 17.66 30.18 27.26 15.25 20.23 18.99 12.32 4.88 20.23 16.77
PS 5.18 9.55 9.75 3.34 13.30 12.32 2.72 2.05 6.42 2.46 0.72 10.58 6.53
PS-J2 2.93 29.88 17.40 37.32 29.47 24.79 23.67 7.24 12.58 25.82 3.75 16.89 19.31

APCER: proportion of attack presentations incorrectly classi-
fied as bona fide presentations in a specific scenario

BPCER: proportion of bona fide presentations incorrectly
classified as presentation attacks in a specific scenario

In a preliminary analysis, all possible MB-LBP configurations
with different cell divisions described in Sec. 4.2 were trained and
tested on images that were not post-processed. The best configu-
ration and the corresponding error rates are listed in Table 5. It is
apparent, that a subdivision into more cells (c = 3) is preferred.
However, no single configuration is equally suitable for all morphing
algorithms and databases. E.g. MB-LBP with k = 0 and c = 3 cells
can reach an D-EER as low as 1.9% detecting FRGCv2 FaceMor-
pher morphs if trained on FERET database and images created by
the UBO-Morpher algorithm, but overall this configuration yields an
D-EER of only 28.0%.

In order to obtain a more robust morphing attack detec-
tion algorithm, multiple MB-LBP configurations can be fused as
described in Sec. 4.3. In Fig. 7, a box plot over the distribution of
D-EERs of all possible fusion combinations of a fixed number of
algorithms is depicted, the corresponding average D-EER per num-
ber of fused combinations is listed in Table 4. The maximum number
of algorithms to fuse is limited, since the algorithm described in
Sec. 4.2 allows for 18 different MB-LBP configurations. With an
increasing number of fused algorithms, the median of the D-EERs
is lowered, as well as the upper quartile and whisker. Thus, in the
remainder of this manuscript, only the fusion of all 18 configurations
is considered.

In Table 5 in the two rightmost columns the performance of
the fused algorithm is shown. For database and morph algorithms
that are easily detectable by single algorithms the fused algorithm
performs good as well. For subsets that are harder to detect, the per-
formance of the fused algorithm drops, but in general they are more
robust than single algorithms.

5.1.1 Comparison to state-of-the-art algorithms: The morph
attack detection performance of common state-of-the-art morph
detection algorithms is listed in Table 6. Additionally, the corre-
sponding Detection Error Trade-off (DET) curves are depicted in
Fig. 8. The algorithms used for comparison comprise of a open-
source facial recognition frameworks based on a ResNet deep neural
networks (ArcFace [49]) and two texture descriptors, namely LBP
[38] and BSIF [39] with patches of size 3× 3 and an optional
division into 4× 4 cells.

As can be seen, the proposed MB-LBP fusion approach clearly
outperforms the algorithms used for comparison. Especially the
detection of PS processed morph images performs far better with an
average D-EER of 2.26%, whereas the best of the other algorithms
yields an average D-EER of 12.95%. The same applies to resized
morphs which are significantly better detected by the proposed
algorithm (5.80%) than by the other algorithms (14.78%). Also the
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Fig. 8: DET-plots of MB-LBP and state-of-the-art algorithms.

challenging JPEG2000 and Print/Scan - JPEG2000 processed mor-
phed images are better detected by the proposed algorithm with an
average D-EER of 8.32% and 8.52%, respectively, while the best of
the other algorithms yield an average D-EER of 19.77% and 22.77%,
respectively.

In all cases, it is the BSIF algorithm in one of the two config-
urations that comes closest to the performance of MB-LBP. The
superiority of texture algorithms over deep learning algorithms in
no-reference scenarios can also be observed in Fig. 8 in the DET
plots. In all four plots it can be clearly seen that ArcFace ranks last
and delivers performance that is largely unsuitable for practical use
in a no-reference scenario. Although the performance of ArcFace is
poor, it should be noted that the deep learning algorithm respond
much less sensitively to image post-processing and are therefore can
be considered to be more robust overall.

In the following, it will be analysed how large the influence on
the performance of the fused algorithms is when training and test-
ing is done on differently post-processed images. In addition, it will
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Table 7 Morph-detection performance when trained/tested on RS images.

Train Test D-EER (in %) ∅ ∅

RS

FaceFusion

FaceMorpher 2.05

6.62

5.80

OpenCV 10.88

UBO-Morpher 9.45

FaceMorpher

FaceFusion 2.72

7.91OpenCV 16.27

UBO-Morpher 13.19

OpenCV

FaceFusion 8.73

10.88FaceMorpher 13.19

UBO-Morpher 14.01

UBO-Morpher

FaceFusion 6.21

5.80FaceMorpher 2.93

OpenCV 12.01

ALL

FaceFusion 10.78

10.88 -
FaceMorpher 7.34

OpenCV 14.63

UBO-Morpher 12.88

be shown in which way the performance depends on the choice of
the morphing algorithm for training. Therefore in Fig. 9 - 12 Kernel
Density Estimation (KDE) plots are given, showing the distribution
of attack and bona fide presentations over a range from 0 to 1, with 0
meaning bona fide and 1 meaning attack. Each pair of thin green and
red curves indicates the performance for a morphing algorithm that
has been used for training. The thick red and green curve depict the
mean performance across all training algorithms, with the D-EER
line (dashed vertical line) indicating the threshold that separates the
attack and bona fide presentations in average. It should be noted that
the EER line differs for the individual post-processings, each repre-
senting different application scenarios. It appears, however, that J2
compression seems to be dominating, so that for J2 and PS-J2 an
equal error is achieved at the same threshold (0.4).

5.1.2 Resized: The detection performance rates are shown in
Table 7. If the resolution of the images is reduced by half, the aver-
age D-EER improves by almost 50% compared to the results of the
preliminary examination to 5.80%. This can be explained by the fact
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Table 8 Morph-detection performance when trained/tested on PS images.

Train Test D-EER (in %) ∅ ∅

PS

FaceFusion

FaceMorpher 5.18

6.73

2.26

OpenCV 9.55

UBO-Morpher 9.75

FaceMorpher

FaceFusion 3.34

7.60OpenCV 13.30

UBO-Morpher 12.32

OpenCV

FaceFusion 2.72

2.62FaceMorpher 2.05

UBO-Morpher 6.42

UBO-Morpher

FaceFusion 2.46

2.62FaceMorpher 0.72

OpenCV 10.58

ALL

FaceFusion 21.46

2.52 -
FaceMorpher 0.31

OpenCV 4.47

UBO-Morpher 4.26

that the reduction of the resolution and thus the deletion of high-
frequency information results in an alignment of the two databases
regarding their image structure, such as image noise. In particular
for smaller value of k it is more likely, that irrelevant information
owed to the image acquisition format are taken into account during
training. It can therefore be assumed that training on resized images
is more likely to consider information that is actually caused by the
morphing process.

As shown in the KDE plot in Fig. 9, the dashed red curve denot-
ing FaceMorpher is far to the left of the EER line, indicating that
probably many of the attack images are misclassified as bona fide.
In this case training on FaceMorpher could therefore be detrimental
to morph attack detection performance.

The performance deteriorates significantly when training is done
with all morphing algorithms, but at the same time it becomes more
robust.

5.1.3 Print/Scan: The detection performance rates are shown in
Table 8. Similar to the resized scenario, the printing and subsequent
scanning of the morphed images seems to result in an extensive
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Table 9 Morph-detection performance when trained/tested on J2 images.

Train Test D-EER (in %) ∅ ∅

J2

FaceFusion

FaceMorpher 2.26

7.34

8.32

OpenCV 17.3

UBO-Morpher 14.63

FaceMorpher

FaceFusion 17.66

21.87OpenCV 30.18

UBO-Morpher 27.26

OpenCV

FaceFusion 15.25

16.99FaceMorpher 20.23

UBO-Morpher 18.99

UBO-Morpher

FaceFusion 12.32

10.06FaceMorpher 4.88

OpenCV 20.23

ALL

FaceFusion 11.29

11.20 -
FaceMorpher 5.9

OpenCV 17.4

UBO-Morpher 14.94

elimination of image capture format-dependent information, so that
morphing-specific information is again more likely to be consid-
ered during training. This explains the good average performance
of 2.26%.

Again, the KDE plot in Fig. 10 clearly shows that training on
Facemorpher shows the least competitive results. The corresponding
red curve lies to a large extent to the left of the EER line. As also
the corresponding bona fide curve is shifted to the left, the D-EER
of 7.60% is still okay when training is done on FaceMorpher.

However, the step-like appearance of the MB-LBP plot shown in
Fig. 8b and the straight sections on both sides of the curve indicate
that the statistical significance in this case is limited, which is due to
the size of the database used for testing in connection with the very
good morph attack detection performance: Since the selection used
for testing from the FRGCv2 database contains only 2,405 images,
the number of incorrectly classified images is very low overall due
to the very good morph attack detection performance, meaning that
even a few misclassifications can have a large impact on the resulting
D-EER. In future work it could therefore be investigated whether
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Table 10 Morph-detection performance when trained/tested on PS-J2 images.

Train Test D-EER (in %) ∅ ∅

PS-J2

FaceFusion

FaceMorpher 2.93

9.65

8.52

OpenCV 29.88

UBO-Morpher 17.3

FaceMorpher

FaceFusion 37.22

27.36OpenCV 29.26

UBO-Morpher 24.69

OpenCV

FaceFusion 23.36

10.68FaceMorpher 7.24

UBO-Morpher 12.53

UBO-Morpher

FaceFusion 25.82

10.27FaceMorpher 3.85

OpenCV 16.89

ALL

FaceFusion 24.49

13.30 -
FaceMorpher 5.18

OpenCV 16.17

UBO-Morpher 14.12

the achieved performance determined here can also be verified when
testing is done with significantly larger databases.

5.1.4 JPEG2000: The detection performance rates are shown
in Table 9. When compressing the images using the JPEG2000
method, so much information is lost that the effect from the two
previous scenarios does not occur. With an average of 8.32%, the D-
EER is almost 70% higher compared to the resized scenario. Also,
the performance is not as robust as in the other scenarios with values
ranging between 7.34% (FaceFusion) and 21.87% (FaceMorpher).

Fig. 11 shows that, as in the previous scenarios, the red curve
indicating FaceMorpher lies far to the left of the EER line. In this
case, it lies even further to the left than the thick green curve, which
represents the average performance, explaining the high D-EER of
21.87% when training is done on FaceMorpher. However, as Fig. 8c
clearly points out, the MB-LBP algorithm still performs significantly
better than all state-of-the-art algorithms compared.

5.1.5 Print/Scan - JPEG2000: The detection performance
rates are shown in Table 10. Compressing the printed and scanned
images using the JPEG2000 algorithm dramatically deteriorates
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morph attack detection performance up to 8.52%. However, it can
also be see that the performance is not reduced compared to the
JPEG2000 scenario, as the D-EER increases by only 0.2% percent-
age points. Also the DET plot (Fig. 8d) and the KDE plot (Fig. 12)
of the two scenarios look very similar. This indicates that it is in
fact only the JPEG2000 compression that affects performance and
printing and subsequent scanning does not further degrade the morph
attack performance.

5.1.6 Generalization: If looking at how the detection perfor-
mance changes when different post-processings are used for training
and evaluation, the trend already observed becomes apparent again.
As one can see in Table 11 PS images are always detected the best.
When evaluating J2 images the performance deteriorates signifi-
cantly. While J2 images are only poorly detected, training on them
provides relatively robust results. It can be assumed that depending
on the application scenario, training with different post-processings
is preferable. Future research might consider the potential effect on
the robustness of the attack detection performance when a fusion of
multiple post-processing is performed.

Table 11 Average detection performance (D-EER in %) for different post-processing.

Test
Train RS J2 PS PS-J2

RS 5.80 14.53 3.03 27.72

J2 8.21 8.32 7.60 16.07

PS 15.45 16.99 2.26 14.01

PS-J2 12.32 12.68 4.26 8.52

5.2 Morph Attack Detection combined with Face
Recognition System

It is worth investigating to what extent the detection performance of
the proposed system is influenced by the use of a FRS. Using a COTS
FRS, the threshold, which decides whether an image is accepted or
rejected, is selected in such a way that a FMR of 0.1% is achieved.
The proposed morphing detection system is applied for each refer-
ence face image which has been part of a biometric match of the
FRS. If the FRS rejects many of the supposedly easier to detect
morphs, these attacks fall out of the set of attacks that the morphing
attack detection algorithm has to detect, which could lead to a rel-
ative deterioration of the detection performance. On the other hand,
the bona fide images, which are incorrectly rejected by the FRS,
also fall out of the set of images that the morphing attack detection
algorithm has to examine. For this experiment the morphing attack
detection system operates at the threshold of the D-EER point.

As can be seen in Fig. 13 the FRS incorrectly accepts over 90% of
the attacks of which 77% are rejected by the morphing attack detec-
tion resulting in a APCER of 23%. It might also be of interest to note
that nearly 20% of the morphs rejected by the FRS would have been
accepted by the morphing attack detection, indicating that some of
the morphs which are more easily detected by the FRS are poten-
tially somewhat more difficult for the proposed system to detect.
This shows the potential that lies in a combination of the two sys-
tems. However 100% of the bona fide images are recognized as such
by the FRS, while the BPCER of the morphing attack detection sys-
tem lies at 23%. Therefore APCER and BPCER are still identical
and the average detection performance of the proposed system did
not deteriorate despite the preceding use of the FRS.

6 Conclusion

In this paper, the performance of MB-LBP on morphs created by
four different morphing algorithms is evaluated. In addition, the
images were post-processed in various ways. The performance of
single algorithms highly depends on the morphs used for training and
testing. The robustness of the algorithms over different morphing

FRS

MAD

Attacks

FRS

MAD

Bona fide

90.91%9.09%

76.57% 23.43%

100%

23.08% 76.92%

Reject

Accept

Fig. 13: Combination of FRS and morphing attack detection (MAD)

algorithms and databases can be increased by the fusion of mul-
tiple MB-LBP configurations and different cell divisions. Further,
it is demonstrated that the robustness increases with the number of
fused algorithms. Training on multiple attack types leads to a more
robust morph detection performance and, therefore, lower error rates
in some cases. The proposed MB-LBP fusion approach outperforms
most of the state-of-the-art no-reference morph detection algorithms.
Finally, this paper emphasizes the need for robust morphing detec-
tion algorithms and diverse databases comprised of different image
sources and morphing algorithms in order to reliably train and eval-
uate face morphing attack detection algorithms.
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