
Biometric Transaction Authentication Protocol:
Formal Model Verification and “Four-Eyes”

Principle Extension

Daniel Hartung and Christoph Busch

Norwegian Information Security laboratory
Faculty for Computer Science and Media Technology

Gjøvik University College
Teknologivn. 22, N-2802 Gjøvik, Norway

{daniel.hartung, christoph.busch}@hig.no

Abstract. The BTA protocol for biometric authentication of online banking
transactions is extended to allow for multiple person authenticated transactions.
In addition a formal specification is given, the protocol is modelled in the applied
pi calculus and the security properties of data and person authentication as well
as non-repudiation are verified using the tool ProVerif.

Keywords: Online Banking; Transaction Authentication; Payment Scheme;
Non-Repudiation of Origin; ProVerif; Applied Pi Calculus; Biometric Systems;
Template Protection

1 Introduction

The need for secure authentication methods is evident when looking at the assets trans-
ferred over the Internet, the level of interconnectedness and the posed threats: a recent
example of malware affecting vital, well-protected infrastructures is the Stuxnet com-
puter worm. And even more, badly protected client computers are exposed to threats:
malware on clients endanger especially online banking transactions, whose manipula-
tion promise rapid financial gain to attackers. This has to be prevented. However from
a service providers view, not only the integrity of the data, but also its origin is to be
guaranteed, which will be referred to as data and person authentication throughout the
paper. Until now, no method for online banking transactions features non-repudiation
of origin (natural person). One reasonable solution to this problem is the use of bio-
metric systems, but not without raising threats to the users privacy.

In [5] a protocol was proposed that addresses the aforementioned problems, it uses
a system for biometric person authentication using so called Privacy Enhancing Tech-
nologies (PETs) or Template Protection to authenticate online banking transactions
without revealing the sensitive biometric data. At the same time the transaction data
has to be authentic in order to get executed by the banking server side. These proper-
ties hold true even if the client is considered to be insecure and possibly controlled by
an attacker.

The BTA protocol – Biometric Transaction Authentication Protocol – is summa-
rized in the next section. It is modelled in section 3 using the applied pi calculus [6]
and its security properties are verified using the tool ProVerif [3] in section 4. Before

concluding the paper, an extension of the protocol, enabling multi-user, multi-modal
as well as multi-factor authentication of single transactions, is given in section 6.

2 BTAP Wrap-Up

The goal of BTAP [5] is to enable data and person authentic online banking transactions
on insecure client computer environments. To reach this goal a biometric subsystem
has to be combined with classic cryptographic functionality. The critical transaction
authentication is sourced out on a tamper-proof biometric transaction device (BTD)
with limited functionality that can be certified using information technology security
evaluations. The other different parties that communicate in the protocol are shown in
figure 1: the customer using a potentially insecure client computer running a banking
software (BSW) and a trusted online banking server (OBS).

Within the first phase of the protocol, the user is enrolled on the BTD using a
biometric identifier and a pre-shared secret key (SBV). The user can afterwards conve-
niently initiate a transaction on the client as it is done nowadays using e.g. the online
portal of the bank. The transaction information is then shared with the OBS and the
BTD. On the BTD the information is displayed within the trusted environment, the
user has to check and verify the data by presenting his or her biometric trait(s) to the
sensor of the BTD. A seal TOS ’ is created within the BTD over the transaction data
using the pre-shared key, that is released by the biometric sample. This seal is sent to
the OBS, which can then check the authenticity of the transaction data as well as the
authenticity of the transaction initiator – only in the case of a successful verification
of the seal, the transaction is confirmed and executed.

Fig. 1. Threat scenario: online banking SW (BSW) resides on possible malware controlled
client environment and communicates with trusted online banking server (OBS) as well as
with a secure biometric transaction device (BTD).

2.1 Information Flow Enrolment and Verification

The protocol involves more complex procedures inside the building blocks. Within
the BTD the biometric subsystem is found, it covers the process of enrolment and
verification that are inspired by the Helper-Data-Scheme [8] for privacy protection,
which performs a fuzzy commitment. For the enrolment, a biometric sensor inside the
BTD captures the biometric sample multiple times, extracts a fixed-length bit feature
vector, which is then analyzed for reliable positions. The resulting reliable bit vector

Fig. 2. Information flow of the enrolment protocol.

(RBV) is fused using the XOR-function (⊕) with an error-encoded version of a pre-
shared key (CBV = ECC(SBV)) that has the same length. Correcting errors using
the decoding DEC of the ECC makes it possible to cope with the noise caused by
the variability in the biometric information. The information stored on the BTD are
not revealing any sensitive biometric information: pseudo identifier PI = hash(SBV),
auxiliary data AD1 = indexes of reliable positions in the feature vector, auxiliary data
AD2 = CBV ⊕ RBV. Figure 2 depicts the enrolment process of binding an identity to a
pre-shared secret key, this process is modelled in a simplified way as described in section
3.6. Note that the pseudo identifier can be renewed or exchanged to enable revocation
in a biometric system, which is not possible if the biometric information itself was used
for the verification of identity. Furthermore no cross matching of different template
protected biometric databases can succeed if the secret SBV is chosen independent
from each other. Potentially sensitive biometric data is never stored or decrypted for
comparison in its original form.

Fig. 3. Information flow of the transaction verification protocol in the core BTAP.

After this step, transactions can be authenticated as shown in Figure 3. Inverting the
enrolment process is releasing the hash value of the pre-shared secret: the data subject
presents the biometric trait, a biometric sample is generated, features are extracted.
The helper data is loaded, so the system is able to extract the bits of the fixed-length
feature vector at positions that should be reliable for the enrolled data subject. The
resulting reliable bit vector XBV is releasing the key if the error correction capabilities
ε (in bits) of the used code is higher than the amount of single bit errors |(XBV⊕RBV)|
occurred during the feature extraction step:

AD2 ⊕XBV = (CBV ⊕ RBV)⊕XBV
= CBV ⊕ (RBV ⊕XBV) = CBV ′

with |(RBV ⊕XBV)| < ε
⇒ SBV = DEC (CBV) = DEC (CBV ′) = SBV ′

The hash value of the extracted secret bit vector SBV ’ is identical to the stored value
PI=hash(SBV) if the enrolled biometric sample was presented and the noise could be
compensated using the error correction decoder function DEC. The seal TOS’/TOS
can be computed over the transaction data TOR (transaction identifier TID, sender
account number SAN, receiver account number RAN, ordered amount ORA) using the

keyed message authentication code function:

TOS ′ = mac(hash(TOR), hash(SBV ′))

and accordingly on the server side

TOS = mac(hash(TOR), hash(SBV)).

2.2 Usage Scenario

The usage scenario of BTAP is seen in high value transactions like in the inter-banking
sector, requiring a maximum level of security – the costs of enrolling the system in
such an environment is negligible. Nonetheless since there is the need for secure au-
thentication methods, BTAP could also be deployed in large scale, as in personal online
banking transaction services, since the fixed cost for the BTD and the infrastructure
would amortize considering the loss due to malware triggered false transactions over
time.

3 Formal model

This section describes the formal method that was used to model BTAP and to analyse
its security properties. The considered attacker model is sketched, the intended security
properties are defined. Then the protocol is described using the exchanged messages
as well as the applied pi calculus. The verification process based on the formal model
is given in the end of this section.

3.1 Applied Pi Calculus and ProVerif

The applied pi calculus is a generalized version of the spi calculus [1], which itself
is an extension of the pi calculus [6]. The pi calculus is a process calculus with the
goal to formally describe concurrent systems, whose configuration may change during
execution. Its variants are specifically designed to analyse and verify security properties
of cryptographic protocols. The tool ProVerif was developed by Blanchet et al. [3]
and it supports automated reasoning for applied pi calculus processes. It translates
the protocol description into Horn clauses and acts upon them as a resolution prover.
ProVerif fully automatically tries to prove security properties, its outcome can be either
one of the following: robust safety can be proven, an attack as counter example is found,
or it can neither prove or disprove robust safety according to the property. The protocol
is modelled and verified using ProVerif, one advantage of using the tool: the Dolev-Yao
attacker model, which is described in the next section, is specified and can be used
directly.

3.2 Attacker Model

We assume the Dolev-Yao attacker model [4], which uses idealizations about the cryp-
tographic primitives: an attacker can not learn from encrypted messages without the
knowledge of the keys used for encryption. Changing an encrypted message without the
knowledge of the key is detectable. Keys can not be guessed or learned from encrypted

messages, also random numbers can not be guessed. Hash functions are collision free
one-way functions. The attacker has full control over the communication channels,
specifically he can: eavesdrop, inject and redirect messages. Furthermore he can gen-
erate keys and random numbers, as well as apply cryptographic primitives on what he
learned.

3.3 Intended Security Properties

The intended properties of the BTA protocol are:

– Authentication: of the transaction data (integrity), the transaction initiator (proof
of identity).

– Non-Repudiation of Origin: a valid transaction can not be repudiated by the ini-
tiator.

– Secrecy : the pre-shared secret and the sensitive biometric information stay secret.

Note: secrecy of the transaction data itself can not be assured if the client computer
is compromised, and is therefore not covered in the core protocol. Additionally the
internal BTD process is not modelled according to the applied pi calculus. Using the
security assumptions, we model an idealized version of it.

3.4 Security Assumptions

The security assumptions for the verification of BTAP are listed below:

– BTD (in the model B) is tamper proof: no malware infection or manipulation of the
processes and the storage of the BTD are possible (Note the advantages of using the
privacy enhancing technology: revocation is enabled, the templates are protected
additionally, only nonsensitive data is stored, storage capacity is negligible, efficient
processing of the bitstrings, no hill climbing attacks possible). BTD supports secure
I/O.

– Biometric subsystem: the biometric sensor can only be spoofed with unreasonable
effort (suitable for unsupervised authentication). Biometric traits are unique and
can not be replicated. The feature extraction system is able to extract a feature
vector close to the enrolled sample, in a way that the shared key is released correctly
(see section 2.1).

– Enrolment phase is completed by the authentic person, the process is not tampered.
– Helper-Data-Scheme (HDS) is not leaking private information about the extracted

biometric feature vector nor the pre-shared secret. The biometric entropy is high
enough to enable reasonable long pre-shared secrets to avoid brute force attacks.

– Online banking server OBS, or short S in the model: trusted and secure environ-
ment. Its public key pkEncS for encryption and pkSignS for signatures are publicly
available.

– Client computer is considered untrusted and can be manipulated by malware.
– Secret keys are secret: pre-shared key SBV is shared1 between server OBS and

BTD, extracted biometric feature vector is also secret.

1 In a real-life scenario the key could be shared using a secure independent channel. Per-
sonalized confidential (physical) mails or credentials could serve as a direct input to the
BTD.

– Computational limitations are: none for the client and server, no public-key crypto
for BTD.

– Communication channel between server S and client C (running the banking soft-
ware BSW), unidirectional channels from C to the BTD and from BTD to the
server.

3.5 BTAP: Message Sequence

Informally a protocol can be described by the messages that are exchanged, the core
message sequence for BTAP [5] is given below, where {} indicate an encryption with
a symmetric key Kxy, a public key pkEncX from X for encryption, or a signature using
the private key prSignX from X. X->Y stands for a message from X to Y. The four
parties are client C, server S, biometric transaction device B and user U:

Message 1: C->S: {(Nonce1, AN, ORA, RAN)}pkEncS
Message 2: S->C: {(Nonce1, Nonce2, AN, ORA, RAN)}prSignS
Message 3: C->B: (Nonce2, AN, ORA, RAN)

Message 4: U->B: (Ok)

Message 5: B->S: (mac(hash(Nonce2, AN, ORA, RAN), hash(SBV’)))

Message 6: S->C: {hash(true, Nonce2, AN, ORA, RAN)}prSignS

The transaction information consists of the sender account number AN, ordered amount
of money to be transferred ORA, and the receiver account number RAN. Nonces are
random numbers that are used only once for proof of freshness. Nonce1 in message 1
and 2 serve as server authentication, only the owner of the private signature key prSignS
(server S) can decrypt message 1 and reply the correct Nonce1 (Nonce1 should include
a simple time stamp besides the random part, that has to be checked for freshness on
the server side before sending message 2). Message 1 is encrypted with the public
encryption key of the server. Nonce2 is included for the freshness of the transaction
data, to avoid replay attacks and to limit the validity using a timestamp part. The
transaction data received by the server as well as Nonce1 and Nonce2 are signed and
send back to the client as message 2. The client forwards the information in message
3 to the BTD. The user has to check and verify the transaction data displayed on the
BTD with his or her biometric trait(s), which is modelled simplified as message 4. The
pre-shared key SBV is released and used to create a seal TOS’=mac(hash(Nonce2, AN,
ORA, RAN), hash(SBV’)) using a message authentication code (MAC) mechanism in
message 5 with hash(Nonce2, AN, ORA, RAN) as the message and hash(SBV’) as
the secret key. The server confirms the transaction in message 6 only if the seal from
message 5 is identical to the seal TOS that can be created on the server side with the
information from message 1, Nonce2, and the pre-shared key SBV’.

3.6 BTAP: Model in the Applied Pi Calculus

The internal processes of the biometric key release inside the BTD are not modelled
here, since we are assuming a secure and tamper-proof environment and an idealized
biometric subsystem. An attacker has no access per definition on the internal variables
and processes. In order to model the process of checking and verification of the authen-
tic transaction data by the user, we use the following approximation: the authentic
transaction data is modelled as data signed with the secret key (the reliable biometric

information XBV or equivalently RBV (see section 3.4)) of a “public-key biometric”
system only known to the user and verifiable by, among others, the BTD.
The attacker can create an arbitrary number of transaction information, which is mod-
elled as evilRAN and evilORA. As we will see in section 4, this is interesting for proving
if such transaction information can be falsely authenticated.

All other protocol steps are modelled straightforward according to the message
sequence shown in Sec. 3.5. The ProVerif code for the definition of functions, reductions
and free names is given below. The number behind a function name is its cardinality. As
primitives we need the hash-, mac-function as well as public-key crypto in this model,
the destructors describe the behaviour of the abstract functions:

(* Constants *)
data true/0.

(* Functions *)
fun hash/1.
fun mac/2. (* with destructor checkmac/2.*)

(* Asymmetric Encryption *)
fun pencrypt/2. (* with destructor pdecrypt/2 *)
fun prv/1. (* private part of a key pair *)
fun pub/1. (* public part of a key pair *)

(* Reductions *)
reduc pdecrypt(pencrypt(x , prv(y)), pub(y)) = x ;

pdecrypt(pencrypt(x , pub(y)), prv(y)) = x .
reduc checkmac(mac(y , x), x) = y .

(* Security Assumptions *)
(* Public Channels / Free Names *)
free c, cs, sb, cb, ub, uc,ORA,RAN,m,m2,m3.

The core of the protocol model are the processes, which define the behaviour of the
communicating parties using the applied pi calculus. The processes are behaving like
the user (processU), the client (processC), the server (processS), the BTD (processB)
as well as the attacker (processAttacker). If a message is not as expected, the 0.-process
is executed (process stops).

ProcessC receives a message m on the open channel uc. m is expected to have
the form of a 2-tuple, the two elements are defined as ORA and RAN in the rest of
the process. A nonce (Nonce1) is created and send on the open channel cs (to the
server) with the transaction data received in m as well as the fixed account number,
all encrypted with public encryption key of S. A reply is expected on cs in the form
of a 5-tuple. The values received should be signed with the private signature key of
the server, and they are expected to be equal to Nonce1, AN, ORA and RAN. On
the second position a new nonce is received, which is defined Nonce2. The new nonce
(used as a transaction identifier) as well as the transaction data is send on the open
channel cb (also to the BTD B). The last line indicates the process to be waiting
for the decision of the server (without function in the model, for the notification if a
transaction was successful):

let processC =
in(uc,m); (* user interaction: transaction data generated *)
let (ORA,RAN) = m in

(new Nonce1 ;
out(cs, pencrypt((Nonce1 ,AN ,ORA,RAN), pub(secretEncS))); (* Message 1 *)
in(cs, reply); (* Message 2 *)
let (= Nonce1 ,Nonce2 ,= AN ,= ORA,= RAN) = pdecrypt(reply , pub(secretSignS)) in

(out(cb, (Nonce2 ,AN ,ORA,RAN)); (* Message 3 *)
in(cs, decision))).

ProcessS describes the server behaviour. It receives a message on channel cs, which is
encrypted with the public encryption key of S. Its decrypted form is expected to be
a 4-tuple (Nonce1, SAN, ORA, RAN). If Nonce1 is fresh (was not received before)
and its timestamp is valid, a fresh and random number is generated (Nonce2) and
send on cs with Nonce1 as proof of authenticity as well as SAN, ORA and RAN, all
signed with the private signature key from S. Note: in the model the freshness check
of Nonce1 is not performed due to limitations in the abstraction of memory in the
applied pi calculus. The next expected message is the seal sent on channel sb (from the
BTD B). If the MAC was created using the secret pre-shared key hash(SBV) and using
the transaction data received earlier in m, then the server accepts the transaction and
creates a signed authentication reply over the transaction data including the nonce.

let processS =
in(cs,m);
let (Nonce1 ,SAN ,ORA,RAN) = pdecrypt(m, prv(secretEncS)) in (* Message 1 *)

(new Nonce2 ;
out(cs, pencrypt((Nonce1 ,Nonce2 ,SAN ,ORA,RAN), prv(secretSignS))); (* Message 2 *)
in(sb,m2); (* Message 5 *)
if checkmac(m2, hash(SBV)) = hash((Nonce2 ,SAN ,ORA,RAN)) then

(* Message 6 *)
out(cs, pencrypt(hash((true,Nonce2 ,SAN ,ORA,RAN)), prv(secretSignS)))).

ProcessB describes the biometric transaction device (BTD, here short: B). It receives
message m3 on channel ub (from the user). The message is expected to be a signed
hash value of the authentic transaction data, only the party in possession of the private
signature key can sign. This is a simplified model of the biometric subsystem. Message
3 is received from the (possibly malware infected) client C. Only if the hash of this
transaction data is equal to the received signed hash, the seal (keyed MAC) is created
over the message m:

let processB =
(* reliable and authentic RAN, ORA from the user *)
in(ub,m3);
let hashvalue = pdecrypt(m3, pub(XBV)) in

(* possibly UNreliable and UNauthentic RAN, ORA from the client *)
(in(cb,m); (* Message 3 *)
(let (Nonce,= AN ,ORAin,RANin) = m in

(if hashvalue = hash((ORAin,RANin)) then
out(sb,mac(hash(m), hash(SBV)))))). (* Message 5 *)

ProcessU models the user, which is creating new authentic ordered amount and receiver
account numbers (a new transaction). It signs these values with the secret private key
(check and verify with biometric trait) and sends it on channel ub. The transaction data
is not considered to be private (guessable + insecure client) and needs to be submitted
to the client C, so it is made available on channel uc:

let processU =

(* user creates new transaction *)
new authORA;
new authRAN ;
(* user checks and verifies authentic transaction data *)
out(ub, pencrypt(hash((authORA, authRAN)), prv(XBV)));
out(uc, (authORA, authRAN)).

The last process, the attacker, is simply creating evil (non-authentic) transaction in-
formation and makes it available on channel c. The idea behind this is to check later,
if non-signed transaction data can be authenticated:

let processAttacker =
new evilORA;
new evilRAN ;
out(c, (evilORA, evilRAN)).

The following steps are modelled in the main process that is executed initially: create
a new secret biometric feature vector XBV and make its public part available for
verification. This is for the simulation of the checked and verified transaction data. A
new secret pre-shared key SBV is created, as well as a sender account number AN,
which is made public. secretEncS and secretSignS are the secrets for generating the
servers key-pairs, again, the public keys are made available to all parties on channel c.
The last part describes the processes that can run after this initialization in parallel.
Note: an unlimited number of processes is indicated by !process. A parallel execution
of two processes X and Y is defined by (processX) | (processY). That means any
number of process instances of the user (processU), the client (processC), the server
(processS), the BTD (processB) and the attacker (processAttacker) can run in parallel.
The client and server are running by purpose with an unbound number of instances in
this model, this may be counter intuitive but can be understood when looking at the
specific processes:

process
new XBV ;
out(c, pub(XBV));
new SBV ;
new AN ;
out(c,AN);
new secretEncS ;
new secretSignS ;
out(c, pub(secretEncS));
out(c, pub(secretSignS));

((!processAttacker) | (!processU) | (!processC) | (!processS) | (!processB))

4 Verification of security properties

In order to verify security properties, queries have to be formalized that are checked by
ProVerif. A query of the form query attacker :x., checks if the attacker gets to know x
during the execution of the processes. The attacker model is set to active.

(* Queries *)
(* Query 1: reliable bit vector extracted from biometric trait(s) *)

query attacker :XBV .
(* Query 2: modelled as public-key system *)
query attacker :prv(XBV).
(* Query 3: pre-shared secret key *)
query attacker :SBV .
(* Query 4: *)
query attacker :hash(SBV).
(* Query 5: encryption secret for public-key server construction *)
query attacker :secretEncS .
(* Query 6: private encryption server key *)
query attacker :prv(secretEncS).
(* Query 7: signature secret for public-key server construction *)
query attacker :secretSignS .
(* Query 8: private signature server key *)
query attacker :prv(secretSignS).
(* Query 9: seal over authentic transaction data *)
query attacker :mac(hash((Nonce2 ,AN , authORA, authRAN)), hash(SBV)).
(* Query 10: seal over arbitrary transaction data *)
query attacker :mac(hash((Nonce2 ,AN , evilORA, evilRAN)), hash(SBV)).
(* Query 11: server reply over authentic transaction data *)
query attacker :pencrypt(hash((true,Nonce2 ,AN , authORA, authRAN)), prv(secretSignS)).
(* Query 12: server reply over arbitrary transaction data *)
query attacker :pencrypt(hash((true,Nonce2 ,AN , evilORA, evilRAN)), prv(secretSignS)).

Execution of the queries in ProVerif shows: query 9 (authentic seal) and query 11
(authentic reply from the server) are true. That means, the attacker gets to know
information that is available on the channels after a successful run of the transaction
authentication protocol using authentic transaction data on the server as well as in the
BTD. The fresh nonce with limited time validity inside the seal and the server reply
avoid replay and delayed-play attacks, therefore the information can not be used to
authenticate another transaction.

To wrap up the ProVerif simulation we could show, that the attacker does not
get knowledge about the secret keys and the biometric feature vector. Non-authentic
transaction data does not get sealed because of the process of checking and verifying
inside the secure environment. If the integrity of a verified transaction is compromised,
the two generated seals, the one inside the BTD and the one inside the server will differ,
in this case the transaction is dropped. Non-repudiation of origin is ensured using the
biometric subsystem, which only releases the key that is used to generate the seal, if
the enrolled person is verifying the transaction. The private server keys stay secret,
therefore the authenticity of the server towards C is guaranteed in the protocol, since
only the owner of the private encryption key can respond with the correct nonce from
message 1 (S only responds to message 1 if Nonce1 is fresh). Attacks on availability
are possible in our model if the attacker drops messages from the channels.

The security properties from section 3.3 hold if the security assumptions from sec-
tion 3.4 hold true. Especially the assumption, that the authentic user is completing
the enrolment phase correctly, is necessary for the non-repudiation of origin property.
In a real-life scenario the enrolment of a user could be performed under controlled
conditions to satisfy the assumption.

A drawback of the core protocol is that the user is incapable of deciding if the
transaction was successfully executed, since a malware infected client can compromise

/ drop the result from the server, this issue and new features are addressed in the next
section.

5 BTAP Extension: Secret Message Exchange

Even though an attacker can not gain information from the seal, it is desirable to
encrypt all exchanged messages to ensure privacy of the banking information. Note
that the seal in message 5 does not need to be encrypted, since an attacker can not
get any information about the key, nor the message from the MAC value. The best
known forgery attacks for an MAC based on iterated keyed hash functions are birthday
attacks, that are also used to find collisions in hash functions [2, 7]. Note also that the
property of secrecy of the messages can not hold when the client is compromised,
since for convenience reasons the client is still used to generate the transactions and to
communicate with the server.

Message 1: C->S: {(Nonce1, Ksc, AN, ORA, RAN)}pkEncS
Message 2: S->C: {{(Nonce1,Nonce2,Nonce3,AN,ORA,RAN, ...

{((Nonce2, AN, ORA, RAN)}Kbs))}prSignS}Ksc
Message 3: C->B: (Nonce3,AN,ORA,RAN,{(Nonce2, AN, ORA, RAN)}Kbs)
Message 4: U->B: (Ok)

Message 5: B->S: {(mac(hash(Nonce2, AN, ORA, RAN), hash(SBV)))}Kbs
Message 6: S->C: {{hash(true, Nonce2, AN, ORA, RAN), ...

({hash(true, Nonce2, AN, ORA, RAN)}Kbs)}prSignS}Ksc
Message 7: C->B: {hash(true, Nonce2, AN, ORA, RAN)}Kbs

Message 1 carries a symmetric session key Ksc, encrypted with the server’s public
encryption key pkEncS for an encrypted communication between S and C (PKI key
verification required). Another symmetric session key, derived from the pre-shared se-
cret SBV, is securing the communication for message 5, 6 and 7:

Kbs = onewayfunction((hash(Nonce3), hash(SBV))).

Since hash(SBV) is known to S and B, Kbs can only be computed within the two
parties (on B after the enrolled user presents his or her biometric trait to release SBV).

After releasing Kbs on the BTD, it is ensured to the device, that S has received the
information (Nonce2, AN, ORA, RAN), since it is forwarded encrypted with Kbs in
message 3 from the client. The BTD can check if the same transaction information was
also send from the client and displayed to the user. Only if the two sets are identical,
the transaction seal is created, otherwise a warning is shown on the secure display.
When receiving message 7, it is proven to the BTD, that the server executed the
transaction encoded in the authentic transaction data. On the secure display of the
BTD the decision can be shown to the user.

The extended protocol does not send any transaction data in an unencrypted form
over the channels, without the need for public-key crypto on the BTD. This extension
ensures that the transaction data stays private and that the execution of the authentic
transaction can be verified.

6 BTAP Extension: Online Banking Transactions Using the
“Four-Eyes” Principle

Authentication of transaction data through multiple persons might be part of a policy
if the ordered amount succeeds the liability of a single person or role. This procedure
might help to prevent financial frauds. BTAP is extendible without much effort to com-
ply with this requirement. Three different scenarios of a multiple-person authentication
are identified, the pros and cons are discussed thereafter: 1.) one local BTD, one shared
secret, 2.) one local BTD, multiple shared secrets, 3.) multiple remote BTDs, multiple
shared secrets.

6.1 One local BTD, one shared secret

The enrolment process of the Helper-Data-Scheme subsystem (Fig. 2) has to be adapted,
the shared secret has to be binded to n different data subjects. Therefore n different
auxiliary-data-1 (AD1) sets have to be generated that define the reliable positions in
the fixed length biometric feature vectors of each biometric trait. The pseudo identifier
is created as in the original enrolment: PI = hash(SBV). Only one auxiliary-data-2
(AD2) is generated during the process using the following formula for the error cor-
rection encoded pre-shared secret CBV = ECC (SBV) and the data subjects reliable
boolean biometric feature vectors RBV i for i = 2...n and n ≥ 2:

AD2 = CBV ⊕ (
⊕

i=1...n

RBV i)

The result of this adapted enrolment: the shared secret can only be released and there-
fore the transaction seal can only be generated over the transaction data, if all enrolled
biometric feature vectors RBV i can be extracted during the authentication phase. This
means, every enrolled person must verify the transaction data locally with his or her
biometric trait. Advantage: the order of presenting the biometric traits is negligible
since the XOR-operation is commutative (still AD1 is person specific and therefore an
ID claim like a token is needed); a data subject k could be revoked, by just present-
ing the biometric trait (where RBV k can be extracted from), AD2 could be updated
accordingly:

AD2 ′ = AD2 ⊕ RBV k

= CBV ⊕ (
⊕

i=1...n RBV i)⊕ RBV k

= CBV ⊕ (
⊕

i=1...(k−1),(k+1)...n RBV i)⊕ (RBV k ⊕ RBV k)

= CBV ⊕ (
⊕

i=1...(k−1),(k+1)...n RBV i)

The drawback in this operation mode is that the amount of bit errors that can be
corrected stays limited – only CBV carries the error-correction code. Evenly distributed
bit errors in the feature vectors RBV i would affect all positions of the codeword.

Alternatively the XOR-operation is applied to the concatenation of all RBV i vec-
tors and CBV. The entropy of the concatenated feature vector will be increased com-
pared to a single feature vector, a longer key SBV and a longer resulting CBV could
be used for high security demands:

AD2 = CBV ⊕ (RBV 1, ...RBV k, ..., RBV n)

Advantage: Higher level of security against brute force attacks on the secret SBV.
Disadvantage: the system is inflexible, a re-enrolment is needed if data subject k is not
allowed to authenticate online banking transactions anymore.

6.2 One local BTD, multiple shared secrets

When using multiple shared secrets, again an ID claim like a token is needed to dis-
tinguish between the enrolled data subjects. A binding of a pre-shared secret key and
each extracted reliable boolean biometric feature vector (RBV i) has to be conducted.
This relates to n different enrolments on the same biometric transaction device (BTD)
as described in the core BTAP. In this scenario, it is possible to create n different
transaction order seals (TOS i) over the same transaction order record TOR = (TID,
SAN, RAN, ORA) using a keyed MAC-function:

TOS i = mac(hash(TOR), hash(SBV i))

The seals are send independently from each other to the server, which knows all the
enrolled subject for a specific banking account. Advantage: Flexible solution for the
user enrolment; Fine-grained policies on the server side enable different levels of security
and flexible requirements (number of seals, seals from specific persons) for a transaction
based on the ordered amount or the receiver account number, or other metadata. And
the non-repudiation property is hold in this scenario, since a unique pre-shared key is
bind to a natural person.

6.3 Multiple remote BTDs, multiple shared secrets

As seen in the previous case, a flexible system could be constructed using multiple
shared secrets and one local BTDs. The same description applies to this case, with the
difference that different BTDs could be used independent from each other, no ID claim
is needed if every data subject is enrolled on a different BTD using a different pre-
shared secret. This case enables time-shifted transaction authentication but it requires
the distribution of pending transactions to the client, which could be done by using
the online banking portal, simple e-mail transfer or a dedicated software.

6.4 Additional Authentication Factors and Multiple Biometric Modalities

BTAP can be extended to a multiple factor authentication system, adding possession as
well as knowledge authentication factors that are given as input to the BTD. Including
this information, which is shared with the server side, the transaction seal TOS would
be computed as:

TOS = mac(hash(TOR), (hash(SBV), hash(Password), hash(TokenSecret)))

with the keyed mac-function. Adding additional authentication factors would strengthen
the BTAP even more.

Extracted reliable biometric feature vectors RBV i originating from multiple bio-
metric modalities Mi with i = 2...n and n ≥ 2 of the same person, like e.g. fingerprint
and fingervein data, can be used to generate a concatenated biometric feature vector
RBV ′ = (RBV 1, ..., RBV n) that is used to release the pre-shared key in the BTA
protocol.

7 Conclusions

The proposed security properties could be proven using a formal model of the core BTA
protocol message exchanges and the protocol verification tool ProVerif. The protocol
enables non-repudiable person and data authentic online banking transaction. The
extensions enable privacy of the transaction data and in addition new security features:
transactions can be sealed by multiple individuals to comply with restrictive policies.
BTAP supports multiple biometric modalities and can be extended for multi-factor
authentication as well. In the near future the pi-calculus must be extended in order to
be able to deal with noisy biometric data as part of security protocols – then also the
internal processes of the biometric transaction device could be modelled and verified.

References

1. Abadi, M., Gordon, A.D.: A calculus for cryptographic protocols: the spi calculus. In: CCS
’97: Proceedings of the 4th ACM conference on Computer and communications security.
pp. 36–47. ACM, New York, NY, USA (1997)

2. Bellare, M., Canetti, R., Krawczyk, H.: Pseudorandom functions revisited: the cascade
construction and its concrete security. Foundations of Computer Science, Annual IEEE
Symposium on 0, 514 (1996)

3. Blanchet, B.: An Efficient Cryptographic Protocol Verifier Based on Prolog Rules. In: 14th
IEEE Computer Security Foundations Workshop (CSFW-14). pp. 82–96. IEEE Computer
Society, Cape Breton, Nova Scotia, Canada (Jun 2001)

4. Dolev, D., Yao, A.C.: On the security of public key protocols. In: SFCS ’81: Proceedings
of the 22nd Annual Symposium on Foundations of Computer Science. pp. 350–357. IEEE
Computer Society, Washington, DC, USA (1981)

5. Hartung, D., Busch, C.: Biometric transaction authentication protocol. The International
Conference on Emerging Security Information, Systems and Technologies 4 (2010)

6. Milner, R., Parrow, J., Walker, D.: A calculus of mobile processes, i. Information and
Computation 100(1), 1 – 40 (1992)

7. Prenel, B., Oorschot, P.C.v.: Mdx-mac and building fast macs from hash functions. In:
CRYPTO ’95: Proceedings of the 15th Annual International Cryptology Conference on
Advances in Cryptology. pp. 1–14. Springer-Verlag, London, UK (1995)

8. Tuyls, P., Goseling, J.: Capacity and examples of template-protecting biometric authen-
tication systems. In: Biometric Authentication. vol. 3087, pp. 158–170. Springer Berlin /
Heidelberg (2004)

