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Abstract: The use of biometric systems is steadily increasing, which leads to
heterogeneity and, thus, possibly interoperability issues. In order to address such
issues, standards are developed by ISO/IEC Joint Technical Committee 1. In the
case of minutiae-based fingerprint recognition, for instance, ISO/IEC 19794-2
defines biometric data interchange records that vendors should adhere to. To validate
adherence to this standard, ISO/IEC 29109-2 specifies means to perform syntactic
conformance testing. Yet, a specification of semantic conformance testing is missing
and is currently being discussed as a working draft amendment of ISO/IEC 29109-2.
In order to contribute to this development, this paper proposes a general semantic con-
formance testing framework. Especially, a formal semantic conformance computation
model is proposed that can be used to assess a biometric systems vendor’s semantic
conformance according to a ground-truth data set and to compare different testing
approaches. Furthermore, an instance thereof is proposed, that honors minutia quality
scores when computing semantic conformance rates. Initial evaluation shows, that
semantic conformance rates computed using this quality-honoring approach corre-
late with inter-vendor performance measures we would expect in a real-world scenario.

Keywords: Biometrics, Fingerprints, Minutiae, Interchange records, Semantic
conformance testing.

1 Introduction

According to the International Biometric Group’s (IBG) Market and Industry Report
2009–2014 [Int09], the annual industry revenues earned with biometrics in 2009 was at
3.4 billion US dollars and is predicted to increase to 9.3 billion US dollars until 2014, with
the most predominant biometric technology currently being fingerprint recognition. Ac-
cording to [Int09], the fingerprint recognition technology market share in 2009 was more
than 65%. Naturally, such an emerging market results in lots of different biometric systems
vendors researching and developing proprietary solutions and competing for market share.
Hence, in order to avoid vendor lock-ins within large installations of biometric systems
(e.g. in border control and law enforcement) and to guarantee interoperability between
different vendor’s biometric systems, standardization of a biometric characteristic’s digi-
tal representation, i.e. biometric samples or biometric templates, is elementary. Currently
such standardization is mainly driven by the International Organization for Standardization
(ISO) and the International Electrotechnical Commission (IEC) and especially their Joint



Technical Committee 1 (JTC1), which develops information and communication tech-
nology standards for business and consumer applications. In ISO/IEC 19794 family of
standards, biometric data interchange records (BDIRs) for different biometric character-
istics are standardized. Specifically, ISO/IEC 19794-2 [ISO05] specifies a biometric data
interchange format for finger minutiae data, i.e. specific points that can be found within
an individual’s fingerprint and can be used to distinguish individuals. Derived from the
informal definition given in ISO/IEC 19794-2 [ISO05], a minutia m ∈ M, withM de-
noting the set of all minutiae, can formally be defined as 5-tuple m = 〈x, y, θ, t, q〉, with
(x, y) being coordinates of a cartesian coordinate-system induced by a biometric sam-
ple, 0 ≤ θ ≤ 255 being the minutiae direction measured in units of 360/256 degrees,
t being a minutiae type (e.g. ridge line ending, ridge line bifurcation, or unknown), and
0 ≤ q ≤ 100 being a quality value expressing the confidence of this minutia’s attributes.
However, currently no standard way of determining minutia quality is defined.

In order to verify the conformance of BDIRs produced by biometric systems to its base
standard, ISO/IEC 29109 family of standards specifies conformance testing methodologies
for biometric data interchange records as defined in ISO/IEC 19794 family. Among this
ISO/IEC 29109 family of standards, ISO/IEC 29109-1 [ISO09a] defines a general frame-
work for conformance testing and ISO/IEC 29109-2 [ISO09b] specifies a conformance
testing methodology for finger minutiae records according to ISO/IEC 19794-2 [ISO05].

ISO/IEC 29109-1 [ISO09a] currently defines three levels of conformance testing. Level
1 (data format conformance) and level 2 (internal consistency checking) types of tests
can roughly be categorized as being syntactic conformance tests which ensure that BDIRs
exported by one biometric system can be imported and interpreted by another biometric
system and vice versa. Level 3 conformance testing on the other hand can be regarded as
semantic conformance testing which, after a BDIR has passed syntactic testing, shall en-
sure that a BDIR created by an implementation under test (IUT) is a faithful representation
of the input biometric data record (IBDR). Syntactic, i.e. levels 1 and 2, conformance test-
ing for finger minutiae records is currently covered in ISO/IEC 29109-2:2010. However,
this version of the standard yet lacks semantic conformance, i.e. level 3, testing, which we
contribute to in this paper.

The remainder of this paper is structured as follows: After this section introduced the
topic, section 2 will give an overview on related work in this field. Section 3 will propose
a semantic conformance testing framework by introducing a semantic conformance com-
putation model. In section 4, a quality score honoring instance of this computation model
will be proposed that can be used to compute an IUT’s semantic conformance rate and its
evaluation will be discussed in section 5. Finally, section 6 summarizes the results and
concludes.

2 Related Work

Semantic conformance testing of minutiae-based feature extractors is a rather new field
of research with limited amount of earlier work. In [BLT+09], Busch et al. propose a



semantic conformance testing methodology and especially highlight the importance of a
reference data set, i.e. ground-truth data, in order to perform semantic conformance test-
ing. In this work, reference data is manually assembled by dactyloscopic experts from the
german federal criminal police office (BKA). Further, two measures, crgtm and cragm, are
proposed which can be used to assess per-sample semantic conformance by measuring the
ratio of ground-truth minutiae, i.e. minutiae marked by human experts, for which a mate
was found and the ratio of automatically extracted minutiae, i.e. extracted using a specific
vendor’s feature extractor, placed within the fingerprint area, respectively. Based on this
initial work, in [LBT+09] Lodrova et al. enhance the measures proposed in [BLT+09] by
further adding a score cramf measuring the ratio of mated automatically extracted minu-
tiae within the fingerprint area. Additionally, a hierarchical clustering algorithm to compile
ground-truth minutiae from scattered expert markup is proposed in [LBT+09]. Using this
clustering algorithm a ground-truth data set consisting of pairs (Pi, Ri) of biometric sam-
ples Pi, i.e. fingerprint images, and corresponding biometric references Ri is compiled
from the scattered expert data. An additional minutiae-clustering algorithm based on the
DBSCAN clustering algorithm has been proposed in [ABN10].

3 Semantic Conformance Testing Framework

In ISO/IEC 29109-1 [ISO09a], semantic conformance testing – or content checking – cur-
rently is defined modality-independent and informally as “a conformance testing method-
ology that tests that a BDIR produced by an IUT is a faithful representation of the IBDR
subject to the constraints of the parameters in the metadata records” [ISO09a]. This type
of definition may seem appropriate for use in case of ISO/IEC 29109-1 [ISO09a], as it is
precise enough at an intuitive level on the one hand and on the other hand leaves enough
room for a more precise refinement in subsequent or modality-dependent standards. From
a modality-dependent point of view, however, the objectives of semantic conformance
testing are more or less defined by the word faithful with no further detailed elaboration.
Hence, in the following we propose a definition of faithful representation and propose a
general and formal semantic conformance computation model, which is currently missing
in literature.

3.1 A Minutiae-specific Definition of Faithfulness

Intuitively, a faithful representation of a biometric characteristic can be understood as any
kind of biometric template or biometric data interchange record that contains exactly the
same kind and amount of features that as well can be found on the true biometric character-
istic. Unfortunately, however, transforming each and every feature of a specific biometric
characteristic into a biometric template usually is not possible in an unbiased way as this
at least is influenced by varying, usually non-linear, physical effects during data capture
(e.g. moisture of the skin, pressure, temporary scars, noise and dust on the capture plate,
etc.). Hence, we define a faithful representation as a biometric template resulting from a
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Figure 1: Illustration of minutiae as detected using three different feature extractors (red, green,
blue) upon the same input biometric sample: (a) some minutiae not being detected by red and green
extractors; (b) addition of spurious minutia; (c) minutiae mis-location around its true position.

noise-free and linear transformation applied to the input biometric sample’s traits.

In the above proposed definition, a faithful representation is defined by the transformation
of the input biometric sample’s traits into a biometric template. We require this transfor-
mation to be both, noise-free and linear, which we explain using the concept of minutiae
as features. LetM be the set of all minutiae, Pi = {m1, . . . ,mj} ⊆ M denote an input
biometric data record consisting of j minutiae and Tk,i = Ak(Pi) = {m′

1, . . . ,m
′
n} ⊆ M

denote an biometric data interchange record, or template, produced by vendor k’s feature
extraction process Ak upon input of Pi. Then, for a feature extraction process to create a
faithful representation of an IBDR Pi we require that

1. each specific true minutia mj = 〈xj , yj , θj , tj , qj〉 ∈ Pi equals its corresponding
mated minutia m′

n = 〈x′n, y′n, θ′n, t′n, q′n〉 ∈ Tk,i, i.e. ∀ψ ∈ {x, y, θ, t} : ψ = ψ′,
and that

2. |Pi| = |Tk,i| holds, i.e. that the feature extraction process neither misses any minu-
tiae, nor adds spurious minutiae.

3.2 Semantic Conformance Computation Model

However, feature extractors usually do not produce faithful BDIRs as defined above
[TGSW09, NPL07]. Instead, often the number of minutiae detected as well as the val-
ues of specific minutiae attributes vary (cf. figure 1). The resulting difference between an
indeed faithful representation Ri ⊆ M of Pi, i.e. a biometric reference, and Tk,i can be
used to formally define a general model for semantic conformance rate computation.

Let M be the set of all minutiae, A be the set of some vendor implementations un-
der test and let Ak ∈ A denote a specific biometric systems vendor’s implementation
under test that, given a specific input biometric data record Pi ⊆ M as input, pro-
duces a biometric data interchange record Tk,i = Ak(Pi) ⊆ M as output. Further, let
GTM = {(P1, R1, ω1), . . . , (PNGTM

, RNGTM
, ωNGTM

)} denote a ground-truth data set
consisting of NGTM triplets of input biometric data records Pl, corresponding known
faithful biometric data interchange records Rl and weights ωl. Additionally, in order to be
able to define a computation model, we make use of a helper function F :M×M→ R,



which takes a biometric data interchange record Tk,i = Ak(Pi) as generated by an IUT
Ak and a corresponding reference record Ri ∈ (Pi, Ri, ωi) ∈ GTM as input and out-
puts a real valued number fk,i. This helper function F is used to quantify the faithfulness
fk,i of BDIR Tk,i as created by IUT Ak upon input of Pi according to reference Ri.
Given these definitions, we define a semantic conformance computation model as four-
tuple SCM = (A, GTM,F , CRmax) which is used to compute semantic conformance
rates CR(Ak) as follows:

∀Ak ∈ A : CR(Ak) =
1

NGTM

NGTM∑
i=1

ωi · F(Ri, Ak(Pi)), (1)

Put informally, the resulting conformance rates CR(Ak) as computed according to
SCM = (A, GTM,F , CRmax) are the average of the faithfulness fk,i of the biomet-
ric data interchange records Tk,i as produced by Ak for the input biometric data records
Pi and reference records Ri, weighted according to ωi.

In order to be able to compare different instances of the above mentioned computation
model SCM and in order to obtain reasonable results we require instances of this model
to have the following properties:

1. The output values CR(Ak) of the model, i.e. a semantic conformance rate belong-
ing to vendor k’s feature extractor, must fall within the interval [0, CRmax], i.e.
0 ≤ CR(Ak) ≤ CRmax. A higher value CR(Ak) indicates a higher semantic
conformance, while a value of 0 indicates no semantic conformance at all.

2. The weighting parameters ωi specified by the ground-truth data set GTM have to
be from the interval [0, 1], i.e. 0 ≤ wi ≤ 1.

3. Derived from requirements one and two, the values fk,i computed by the helper
functionF must fall within the interval [0, CRmax] as well, i.e. 0 ≤ fk,i ≤ CRmax.

4. The helper function F used to quantify the faithfulness of a BDIR Tk,i according to
the given GTM has to be continuous.

The notion of semantic conformance rates according to the above given formal definition
of a semantic conformance computation model deviates from the one given in Busch and
Lodrova’s work. Busch, Lodrova et al. [BLT+09, LBT+09] define semantic conformance
rates for a specific input biometric data record and as a means to calculate semantic con-
formance rates propose three different measures, crgtm, cragm, cramf . In contrast, we
define semantic conformance rates for a specific biometric systems vendor’s implementa-
tion under test and for its computation make use of a functionF measuring the faithfulness
of a biometric template Tk,i created by vendor k’s algorithms upon input of a biometric
sample Pi according to a provided reference Ri. Hence, semantic conformance rates in
the sense of Busch, Lodrova et al. relate to what in this work is introduced as measures of
faithfulness. The reason for this difference in notion is that we believe that an IUT specific
conformance rate seems to be more useful, as having a semantic conformance rate indicat-
ing the vendor’s implementation under test capabilities to generate faithful representations



of the input biometric data record enables the possibility to certify IUTs according to a
conformance rate specific threshold CR0. In other words, using the notion of IUT spe-
cific conformance rates introduced in this paper we can attest a vendor k’s conformance if
CR(Ak) > CR0 holds.

In order to map the notion and formulae proposed in [BLT+09, LBT+09] to the proposed
computation model, we can define a helper function FBL as follows:

FBL(Ri, Tk,i) = λgtmcrgtm(Ri, Tk,i)+λagmcragm(Tk,i)+λamfcramf (Ri, Tk,i), (2)

with λgtm, λagm, λamf being conformance rate, in the sense of Busch et al., specific
weights and λgtm + λagm + λamf = 1. Using this function, for a given ground-truth
data set GTM and a set of vendor implementations under test A, we derive an instance
SCMBL = (A, GTM,FBL, 1) of the semantic conformance computation model pro-
posed above. Unfortunately, score fusion is not discussed in [BLT+09, LBT+09] and
hence reasonable values for λgtm, λagm, λamf yet have to be determined.

4 Quality-honoring Conformance Rate Computation

In the preceding section a general semantic conformance computation model SCM =
(A, GTM,F , CRmax) has been introduced, which heavily depends on a ground-truth
data set GTM and a function F : M×M → R in order to compute semantic confor-
mance rates CR(Ak) for implementations under test Ak ∈ A. What is still missing to
be able to compute conformance rates is the discussion of a function F(Ri, Tk,i) that can
be used to quantify the faithfulness of a biometric template Tk,i = Ak(Pi) generated by
Ak upon input of Pi according to reference Ri. Ideally, this function should be able to
quantify effects due to the following misbehavior as identified in the MINEX [Nat06] and
MTIT [NPL07] projects:

1. Misplacement of minutiae, i.e. incorrect minutia attributes (x, y, θ, t). Assessment
of minutia quality q is excluded in MINEX and MITIT as there’s currently no stan-
dard process defined which can be used for quality determination.

2. Placement of spurious minutiae, i.e. false addition of artificial minutiae.

As mentioned earlier, semantic conformance testing fundamentally bases on the notion of
faithfulness. In section 3.1, faithfulness has been defined using minutiae attributes. Hence,
this section develops a semantic conformance computation model that quantifies minutiae
misplacement as well as placement of spurious minutiae in order to determine faithfulness
of a biometric template Tk,i with regard to biometric reference Ri. Additionally, this
instance of SCM leverages minutiae quality scores, which are currently being neglected
by other approaches. As this model is inspired by SCMBL and basically is a quality-
honoring version of it, this model is further called SCMQBL = (A, GTM,FQBL, 1).
In order to assess faithfulness of a biometric template Tk,i with regard to a reference Ri,
SCMQBL makes use of the following measures:



Minutiae misplacement Let M denote the set of all minutiae, Tk,i ⊆ M, Ri ⊆ M,
mj = (xj , yj , θj , tj , qj) ∈ Ri denote the j-th minutiae in Ri and m′

j =
(x′j , y

′
j , θ

′
j , t

′
j , q

′
j) ∈ Tk,i denote an automatically extracted minutia spatially clos-

est to mj . Then minutiae misplacement is quantified using a helper function
γ1(Ri, Tk,i) that is defined as

γ1(Ri, Tk,i) =
1

|Ri|

|Ri|∑
j=1

(1− (1− faith(mj ,m
′
j)) ∗

exp(q′j/100)

exp(1)
)2, (3)

with 0 ≤ faith(mj ,m
′
j) ≤ 1 being a helper function used to quantify the faithful-

ness of minutia m′
j with respect to ground-truth minutia mj defined as

faith(mj ,m
′
j) =

{
0, if d2(mj ,m

′
j) > told

fj , otherwise
, (4)

and fj being the faithfulness score of minutiae m′
j that is closest to mj , i.e. with

euclidean distance d2(mj ,m
′
j) ≤ told. We choose told = W/2, with W denoting

the average ridge width in analogy to [LBT+09]. fj is composed of three scores
s∆d
j , s∆θ

j , s∆t
j as follows:

fj =
s∆d
j + s∆θ

j + s∆t
j

3
. (5)

The scores s∆d
j , s∆θ

j , s∆t
j are computed as follows:

s∆d
j =

told − d2(mj ,m
′
j)

told
, (6)

s∆θ
j =

π −min{2π − |θj − θ′j |, |θj − θ′j |}
π

, and (7)

s∆t
j =


1, if tj = t′j

0, 25, if tj 6= t′j and tj is unknown
0, otherwise

. (8)

Spurious minutiae LetM be the set of all minutiae, letRi ⊆M be a biometric reference
belonging to biometric sample Pi, let Tk,i = Ak(Pi) denote a biometric template
generated by vendor k’s feature extraction algorithm upon input of biometric sample
Pi and let m = (x, y, θ, t, q) ∈ Ri, m′ = (x′, y′, θ′, t′, q′) ∈ Tk,i be ground-truth
and automatically extracted minutiae, respectively. Further, let Sk,i ⊆ Tk,i denote
the subset of automatically extracted minutiae that do not fall within a tolerance-
bound defined by told of any ground-truth minutiae, i.e. Sk,i = {m′ ∈ Tk,i|@m ∈
Ri : d2(m,m

′) ≤ told}. In essence, Sk,i denotes the subset of spurious minutiae.
Then, spurious minutiae are quantified as follows:

γ2(Ri, Tk,i) = 1− 1

|Tk,i|

|Sk,i|∑
j=1

q′j
100

, (9)

with q′j specifying the quality score associated with j-th minutia m′
j ∈ Sk,i.



Using these rates, FQBL is computed according to

FQBL(Ri, Tk,i) = λ1γ1(Ri, Tk,i) + λ2γ2(Ri, Tk,i). (10)

Terms γ1(Ri, Tk,i) and γ2(Ri, Tk,i) are quality-honoring modifications of rates
crgtm(Ri, Tk,i) and cramf (Ri, Tk,i), respectively, with some further considerations. Most
significantly, both measures utilize minutiae quality scores to weight penalties induced by
misplaced or spurious minutiae. In order to achieve this, the automatically extracted minu-
tia’s quality value q′ is divided by 100, leading to penalty factors in the interval [0,01; 1].
Thus, a higher quality score, i.e. higher confidence, leads to a higher-weighted penalty or a
lower faithfulness score. If a specific minutia’s quality value is set to 0, indicating that no
quality information is available, the minutia is regarded to have a quality value of 100. The
reason for this is that if a vendor does not provide minutia quality information, all minutiae
have to be assumed to be of same high confidence. Hence, in these cases, penalties will be
weighted maximally. Furthermore, neither measure distinguishes between minutiae placed
within the fingerprint area, at the border or in the background area as this information is not
available in minutiae-based templates and hence should neither affect comparison scores,
nor has impact on a biometric template’s faithfulness according to our definition.

In order to determine γ2(Ri, Tk,i), i.e. to quantify minutiae misplacement, three scores
are computed that assess spatial differences (s∆d

j ), deviations in minutiae angles (s∆θ
j )

and differences in minutiae types (s∆t
j ). All those scores fall within the interval [0; 1],

with the extrema 0 denoting maximum difference and 1 denoting no difference. Besides
s∆t
j , all scores are continuous. s∆t

j measures differences in minutiae types. If the type t
of a ground-truth minutiae m equals the type t′ of an automatically generated minutia m′,
i.e. if t = t′, then s∆t

j reaches maximum. If the type value of the ground-truth minutia
m is set to unknown, or other, than s∆t

j is set to 0,25. The rationale behind this is that if
dactyloscopic experts, or other reference feature extractors, are not able to correctly deter-
mine a minutia’s type, the implementation under test should not be penalized rigorously
as there’s no reference. In any other case, s∆t

j is set to 0.

The score fj basically is an unweighted measure of minutiae faithfulness, i.e. similarity
of two minutiae mj ,m

′
j . It is composed of the above mentioned scores s∆d

j , s∆θ
j , s∆t

j .
For determining this measure, the average of those three scores is computed, i.e. all three
scores influence fj in the same manner. This decision was made by purpose as while
according to experts from the german federal criminal police office, cartesian coordinates
of minutiae are more distinctive than minutiae angles, which are more distinctive than
minutiae type, their influence on the faithfulness according to the definition introduced
in section 3.1 should be the same. However, if further research may suggest to assign
different weights to the scores s∆d

j , s∆θ
j , s∆t

j , equation (4) can easily be adapted.

In order to compute γ2(Ri, Tk,i), the penalty imposed due to differences in minutiae at-
tributes, i.e. (1−faith(mj ,m

′
j)), is weighted according to the mated automatically gener-

ated minutiae’s quality scores. This is done by using the weight factor
exp(q′j/100)

exp(1) . Further
on, the thus resulting weighted penalty is subtracted from 1, i.e. to derive a minutia’s
quality-weighted faithfulness, and the the result is raised to the power of 2. The reason
for this is that the non-linearity induced by the raise to the power of 2 is used to dilate



(a) (b)

Figure 2: This figure illustrates the impact of quality scores and minutia faithfulness on the resulting
quality-weighted faithfulness score. Part (a) illustrates scores without dilation due to the raise by
power of two, part (b) depicts results using the formula given in formula (3).

the faithfulness scores achieved. This especially leads to a higher resolution of low-valued
scores. The resulting score distribution for varying quality and minutia faithfulness param-
eters is depicted in figure 2. Especially, figure 2 (a) illustrates minutia faithfulness if the
scores would not have been raised to the power of 2, while figure 2 (b) shows the dilated
result according to the formula given in equation (3). As can be seen, due to this dilation
a higher resolution of low-quality values, i.e. upper left corner of the images, is achieved.

Finally, FQBL makes use of weight parameters λ1, λ2 which specify the influence of
γ1(Ri, Tk,i) and γ2(Ri, Tk,i), respectively, on the conformance rates CR(Ak). For the
time writing, we suggest assigning both a value λ1 = λ2 = 0.5 as the different measures’
impact on semantic conformance is unclear. However, these parameters can be fine-tuned
using an appropriate numeric optimization process if further insight is available.

5 Evaluation

In order to draw conclusions on SCMQBL, first an impression of inter-vendor perfor-
mance has to be obtained, which will be discussed in the upcoming section. After that,
plausibility of SCMQBL will be assessed and its performance will be evaluated with re-
gard to SCMBL.

5.1 Inter-Vendor Performance

Three software development kits, AVA
, AVB

, AVC
from different biometric systems ven-

dors that claim conformance to ISO/IEC 19794-2 were available for testing. Using these
SDKs, ISO/IEC 19794-2 conforming biometric templates have been generated and equal
error rates have been computed for every comparator, reference extractor, probe extrac-



Avg AVA
AVB

AVC

AVA
0.0415 0.0459 0.0493

AVB
0.0455 0.0428 0.0519

AVC
0.0495 0.0516 0.0376

IUT nnEER CRQBL(·) CRBL(·)
AVA

0.0476 0.6214 0.6285
AVB

0.0488 0.5133 0.6295
AVC

0.0506 0.4039 0.6192
(a) (b)

Table 1: (a) lists average EERs of feature extractors AVA , AVB , AVC across those vendor’s compara-
tors; rows denote reference generators, columns denote probe generators. (b) lists nnEERs computed
according to equations (11) – (13) and conformance rates of IUTs AVA , AVC , AVC as computed
according to SCMBL and SCMQBL.

tor permutation using the FVC2000 DB11 data set. In order to approximate performance
achieved using a specific feature extractor’s templates in an heterogeneous environment
and to rank the feature extractors according to that, we compute average equal error rates
over all three comparators. The average EER values are comparator independent and listed
in table 1 (a). Based on these values, we calculate feature extractor specific average non-
native equal error rates (nnEER) as follows:

nnEERVA
=

EERVA,VB
+ EERVA,VC

+ EERVB ,VA
+ EERVC ,VA

4
(11)

nnEERVB
=

EERVB ,VA
+ EERVB ,VC

+ EERVA,VB
+ EERVC ,VB

4
(12)

nnEERVC
=

EERVC ,VA
+ EERVC ,VC

+ EERVA,VC
+ EERVB ,VC

4
(13)

The rationale of this is that nnEERs should give an impression of equal error rates in
heterogeneous environments – those scenarios we actually are interested in. From a higher
nnEER, we conclude lower performance and vice versa. As these values are computed
on comparator independent EERs, i.e. values listed in table 1 (a), the resulting nnEER
values (cf. table 1 (b)) are assumed to give a rough ranking of the feature extractors’
performances, independent of template comparators’ performances. Thus, based on the
given data, AVC

seems to be the worst feature extractor, while AVA
seems to be the best

and AVB
the second best performing feature extractors.

5.2 SCMQBL Evaluation

In order to empirically assess the plausibility of semantic conformance rates computed ac-
cording to SCMQBL, the following specific tests were performed. In all cases, parameters
λ1 and λ2 (cf. equation (10)) were set to 0.5:

1. Equality test: Conformance rates were computed using the same set of biometric
templates both, as reference and as probe. The result of this test is that for all
cases a maximum semantic conformance rate of 1 is computed. This is the expected

1http://bias.csr.unibo.it/fvc2000/



outcome as if biometric templates under test equal the references in ground-truth,
all biometric templates are faithful.

2. Empty template test: Conformance rates were computed using a modification of the
ground-truth data set as probe data set. In this modified probe data set, no biometric
template contains a single minutia. This results in a conformance rate of 0, which is
the expected outcome.

3. Single mate test: Again, a modification of the ground-truth data set is used as probe
data set. The probe data set is modified in such that all but one minutiae are syn-
thetically misplaced to not mating with any minutiae in the reference data set. I.e.,
every biometric probe contains a single faithful minutia and many spurious minu-
tiae. All quality values were additionally set to 100. This resulted in a rather small
conformance rate (0.0163), which is expected for this type of test.

Based on these empirical analyses we argue that SCMQBL computes plausible seman-
tic conformance rates, such that higher similarity of biometric references and biometric
probes leads to higher semantic conformance rate and vice versa.

Further to this basic plausibility testing, we try to show that semantic conformance rates
computed by SCMQBL correlate with expected real-world inter-vendor performance. Es-
pecially, this means that we try to show that a vendor ranking induced by conformance
rates correlates with the nnEER-based ranking given in table 1 (b). For this, semantic
conformance rates are computed for all feature extractors using the data set described in
[BLT+09], with parameters λ1, λ2 being set to 0.5, each. The results of this computation
are given in table 1 (b). As can be seen, conformance rates resulting from SCMQBL

correlate with nnEER rates, i.e. CRQBL(AVA
) > CRQBL(AVB

) > CRQBL(AVC
).

In order to get an impression of the performance of SCMQBL in contrast to SCMBL,
the same computations have been performed for SCMBL. The results of this are listed in
column CRBL(·) of table 1 (b). Conformance rates CRBL(·) are derived by specifying
λgtm = λagm = λamf = 1/3. Based on these results SCMQBL seems to outperform
SCMBL for the given data set and feature extractors, as the ranking induced by SCMBL

does not correlate with nnEER values.

6 Summary and Conclusions

In this paper, a semantic conformance testing framework for minutiae-based feature ex-
tractors has been proposed. Especially, a general formal semantic conformance computa-
tion model SCM = (A, GTM,F , CRmax) has been derived from informal descriptions
found in ISO/IEC 29109 family of standards, which can be used to develop and com-
pare different instances thereof. The basic underlying concept of this general model is the
notion of faithfulness, which has been formally defined for minutiae-based biometric inter-
change records specified in ISO/IEC 19794-2 [ISO05]. This computation model has been
used to derive a quality-honoring instance, which has been compared to an existing ap-
proach. Initial results show that the quality-honoring approach SCMQBL proposed in this



paper outperforms SCMBL, as the first one correlates with inter-vendor performance that
would be expected in real-world scenarios which the latter does not. However, the authors
are aware that the number of SDKs available for testing was limited and further analyses
should be carried out. For future work, the author’s propose to perform in detail analyses
of the minutiae misplacement problem (MMP), i.e. the impact of minutiae misplacement
on comparison scores, as this not only seems to be one of the most pre-dominant issues
with automatic feature extraction, but also can easily be measured and used for semantic
conformance testing.
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